Synthesis and X-ray Crystal Structures of a Calixarene-Related, Tetraamino, Tetraphenolic, Polynucleating Macrocyclic Ligand and Its Zn^{II}₄ and Co^{III}₃ Derivatives

Martin J. Grannas, Bernard F. Hoskins, and Richard Robson*

School of Chemistry, University of Melbourne, Parkville, Victoria 3052, Australia

Received July 30, 1993®

Reduction with NaBH₄ of the macrocyclic tetra Schiff base ligand formed by condensation of two molecules of 2,6-diformyl-4-methylphenol with two molecules of 2,6-bis(aminomethyl)-4-methylphenol affords the corresponding tetraamino, tetraphenolic macrocyclic ligand L_rH_4 . Determination of the structure of the hydrochloride salt with the remarkable solvation composition L_rH_4 ·4HCl·H₂O·CH₃OH·C₂H₅OH, reveals a dome-shaped $L_rH_8^{4+}$ cation with a water molecule and two of the chloride ions H-bonded inside the domed macrocyclic cavity. Crystal data: monoclinic, space group $P_{2_1/c}$, a = 16.190(3) Å, b = 10.246(3) Å, c = 26.756(6) Å, $\beta = 96.88(2)^\circ$, Z = 4. Reaction of L_rH_4 -4HCl with zinc acetate in methanol containing tetraethylammonium hydroxide affords crystals of $[L_4$ - $Zn^{II}_{4}(OH)(CH_{3}CO_{2})_{3}(CH_{3}OH)]$ ·1.5CH₃OH whose structure was determined by X-ray crystallography. Crystal data: monoclinic, space group C2/c, a = 34.213(9) Å, b = 16.028(3) Å, c = 20.640(3) Å, $\beta = 119.17(2)^{\circ}$, $Z = 10.17(2)^{\circ}$, Z = 10.18. The macrocycle binds the four zincs in a kite-shaped arrangement totally lacking in symmetry. A central hydroxo ligand bridges three of the zincs and is 2.849(5) Å from the fourth zinc. Ignoring this weak interaction with the hydroxo, this fourth zinc has an irregular 4-coordinate geometry; two of the remaining zincs are 5-coordinate, and the other is 6-coordinate. Reaction in air of L_rH_4 -4HCl with cobaltous acetate in the presence of OH⁻ and BF₄yields crystals of $[L_rCo^{III}_3(OH)(CH_3CO_2)_3]BF_4 \cdot 3.83H_2O$ whose structure was determined by X-ray crystallography. Crystal data: monoclinic, space group $P2_1/n$, a = 15.555(3) Å, b = 15.141(4) Å, c = 21.723(3) Å, $\beta = 98.96(1)^\circ$, Z = 4. The macrocycle binds three cobalt(III) centers, the fourth nucleation site being vacant. A central bridging hydroxo ligand and three bridging acetato ligands afford distorted octahedral arrangements for all three cobalts.

Introduction

The organization provided by an appropriately designed binucleating ligand can confer upon its derived binuclear complexes unusual structural features¹ and unusual reactivity, including catalytic properties, e.g., dipalladium complexes of certain binucleating ligands catalyze the hydration of nitriles to carboxamides by a bimetallic pathway.² Such complexes, moreover, provide useful models for certain proteins containing pairs of metal centers;3 e.g., a dimanganese complex of a 2,6diformyl-4-methylphenol-derived binucleating ligand was recently shown to act as a functional model for manganese-containing catalase.⁴ The expectation that unique behavior may similarly be shown by complexes in which a single ligand organizes more than two metal centers into some predetermined arrangement has prompted us to study the synthesis and properties of complexes of macrocyclic ligands such as I^5 (hereafter L_sH_4) potentially capable of binding up to four metal centers in close proximity.

Although system I offers much scope for new chemistry, the more robust and more flexible tetraamine ligand II, which is the subject of the present report, may have significant advantages in a number of areas of potential application. For example, reactivity studies with complexes of II may be possible under conditions where analogous complexes of I could not be used because of degradative attack at the weak link in the ligand, namely, the imine. Moreover, a desirable feature of a polynuclear metal derivative which is intended to catalyze some sort of multistep reaction of substrates is sufficient flexibility to allow metal-metal

- (3) Fenton, D. E. In Advances in Inorganic and Bioinorganic Mechanisms;
- Sykes, A. G., Ed.; Academic Press Inc.: London, 1983; Vol. 2, p 187. (4) Sakiyama, H.; Okawa, H.; Isobe, R. J. Chem. Soc., Chem. Commun. 1993, 882
- (5) Bell, M.; Edwards, A. J.; Hoskins, B. F.; Kachab, E. H.; Robson, R. J. Am. Chem. Soc. 1989, 111, 3603. Edwards, A. J.; Hoskins, B. F.; Kachab, E. H.; Markiewicz, A.; Murray, K. S.; Robson, R. Inorg. Chem. 1992, 31, 3585.

spatial relationships and individual metal coordination geometries to vary from one intermediate to the next as substrates are first introduced, then suffer modification, and finally are expelled; the potentially more flexible system II may have distinct advantages over I in such applications.

With regard to differing redox chemistries of derived metal complexes, the pair of macrocycles III and IV provides a close

[•] Abstract published in Advance ACS Abstracts, February 15, 1994. Robson, R. Inorg. Chim. Acta 1982, 57, 71. McKenzie, C. J.; Robson, R. J. Chem. Soc., Chem. Commun. 1988, 112.

⁽²⁾

parallel with I and II. Ligand IV apparently facilitates the attainment of a wider range of oxidation states in its binuclear derivatives than III.⁶ For applications in the area of multielectron oxidation and reduction of substrates, therefore, II again promises advantages over I.

As a tetraphenolic macrocycle in which the phenolic nuclei are interconnected by the carbons or ho to the hydroxyl, II has much in common with the calixarenes which were intensively studied in recent years, having numerous actual and potential applications in the supramolecular area;⁷ indeed, the cup-shaped structures of some of the derivatives of II described herein are very reminiscent of the calixarenes. Some examples of "enlarged" calixarenes in which the links between phenolic nuclei have been extended beyond the normal methylene and to which general class II belongs were recently studied.8

Reported here are the synthesis of II (hereafter L_rH_4) and some of its chelating chemistry, including the X-ray structural characterization of the tetrahydrochloride of the metal-free ligand $(L_rH_4 \cdot 4HCl)$, a tetrazine complex, and a tricobalt complex.

Results

L_rH₄·4HCl. Reduction of a suspension of the orange dihydrochloride, L_sH₄·2HCl,² of the tetra Schiff base ligand I in ethanol at 0 °C gave a suspension of an amorphous yellow solid which we found too insoluble in all solvents tested to allow recrystallization. Comparison of the IR spectrum of this crude solid with that of an authentic sample of L_rH_4 obtained from a subsequently obtained sample of pure L_rH₄·4HCl indicated that it consisted mainly of L_rH_4 . The crude solid suspended in methanol dissolved upon treatment with HCl and analytically pure, crystalline L_rH_4 ·4HCl·H₂O could be isolated from the solution so formed. The ¹H NMR spectrum of L_4H_4 ·4HCl in D_2O was very simple, showing only three singlets at δ 2.16, 4.14, and 7.07 in 3:4:2 proportions, arising from the methyl, methylene, and aromatic hydrogens respectively.

Single crystals suitable for X-ray crystallography with the remarkable solvation composition LrH4·4HCl·H2O·CH3OH·C2H5-OH were obtained by recrystallization from a mixture of methanol ("good" solvent) and ethanol ("poor" solvent) acidified with HCl gas. The methanol and ethanol were "undried", the small percentage of water contained therein providing the water molecule selectively trapped (as described below) at the center of the macrocycle. Crystal data and details of the crystal structure determination are given in Table 1.

Figure 1a shows a front view and the atom-numbering scheme, and Figure 1b shows a side view of the macrocyclic tetracation L₁H₈⁴⁺ together with the associated four chloride ions and the water, methanol, and ethanol molecules which are involved in a complex hydrogen-bonded network. Atomic coordinates are given in Table 2, and selected interatomic distances and angles are given in Table 3.

The LrH84+ cation adopts a dome-shaped arrangement with all four phenolic oxygen atoms oriented toward the top of the dome and the aromatic methyl groups along its lower rim. The four nitrogen atoms are close to planar, the maximum deviation from the average N_4 plane being 0.14 Å. The four aromatic rings are inclined almost equally to this average N_4 plane, the dihedral angles falling in the narrow range 45.9-47.6°. Both hydrogens of each NH_2^+ are on the same side of the N_4 plane, the four hydrogens associated with N1 and N3 being on the side toward the top of the dome and those associated with N2 and N4 on the opposite side.

The macrocycle is deformed by internal hydrogen bonding so that the O1...O4 and O2...O3 separations are considerably less than the O1...O2 and O3...O4 separations. As is indicated in Figure 1a, O1 and O4 are hydrogen bonded to N1 [O1...N1, 2.841(14) Å; O4...N1, 2.802(11) Å] and likewise O2 and O3 are hydrogen bonded to N3 [O2...N3, 2.829(12) Å; O3...N3, 2.688-(13) Å]. The hydrogens on N2 and N4 by contrast are not involved in hydrogen bonding to adjacent phenolic centers but rather to chloride and water.

Two of the chlorides, Cl3 and Cl4, and both the methanol and ethanol are located outside the LrH84+ dome whereas the water and the other two chlorides are inside. The water molecule is approximately centrally located within the macrocyclic cavity, being 0.37 Å "above" the N_4 plane and roughly the same distance "below" the group of four phenolic oxygens. Cl1 and Cl2 are simultaneously associated with the upper region of the dome of one macrocyclic system and with the interior of the dome above (Cl1^{III} and Cl2^{III}). The two O-H bonds of the water molecule are H bonded to Cl1 above and Cl2^{III} below. In addition the water oxygen atom is hydrogen bonded to the N-H of N4 and the O-H of the phenolic O3.

The hydrogen atoms associated with O1 and O4 were not observed in the crystal structure analysis, but the short distances between these oxygens and certain chlorides were strongly suggestive of hydrogen bonding [O1---Cl1, 3.036(10) Å; cl2---O4, 3.019(9) Å].

 L_rB_2O . We routinely produce L_sH_4 ·2HCl as orange crystals by maintaining just below its boiling point a methanolic solution containing 2,6-diformyl-4-methylphenol and 2,6-bis(aminomethyl)-4-methylphenol and acetic acid; the crystals reproducibly start to separate after about 2 h. When a solution so obtained, just before L_sH_4 ·2HCl would be expected to appear, is cooled to ice temperature and treated with excess sodium borohydride, a colorless crystalline solid separates whose elemental composition is consistent with the formulation $L_rB_2O(V)$. The parent peak isotopic pattern in the FAB mass spectrum centered at m/e 631 is consistent with this formulation (theoretical mass of $L_r B_2 O$ is 631.36). The insolubility of $L_r B_2 O$ prevented NMR spectra from being recorded. We were unable to obtain crystals of $L_r B_2 O$ suitable for X-ray studies.

 L_rB_2O on treatment with HCl gave L_rH_4 ·4HCl.

Incorporation of CH₂ Groups into the Nucleation Sites of L₄. Reaction of L_rH_4 ·4HCl with formaldehyde and lithium acetate in 1:4:8 proportions in methanol gives VI, characterized by elemental analysis, MS, and IR and NMR spectroscopy. The ¹HNMR spectrum was very simple, showing the aliphatic protons as four singlets and the aromatic protons as an AB quartet.

VI was readily hydrolyzed by aqueous ethanolic HCl to L_rH₄·4HCl.

L₇Zn^{II}₄(OH)(CH₃CO₂)₃(CH₃OH). Reaction mixtures in boiling methanol of zinc acetate tetrahydrate, L_4H_4 ·4HCl·H₂O, lithium acetate dihydrate, and tetraethylammonium hydroxide in 5:1:10:10 proportions upon cooling gave colorless crystals of composition $[L_rZn^{II}_4(OH)(CH_3CO_2)_3(CH_3OH)] \cdot 1.5CH_3OH.^9$ X-ray diffraction studies were carried out on a single crystal grown directly from such a reaction mixture.

The structure of the L_rZn^{II}₄(OH)(CH₃CO₂)₃(CH₃OH) molecule and the atom-numbering scheme are represented in Figure 2. Atomic coordinates are given in Table 4, and selected interatomic distances and angles are given in Table 5. The complex is bowl-shaped but totally lacking in symmetry, being present in the crystal in enantiomeric pairs; in Figure 2 the view is down into the bowl. The four zincs are arranged in an unsymmetrical pattern resembling a kite with Zn1 at the most acute vertex, which has been bent from planarity around its short diagonal, Zn2...Zn4. The dihedral angle between the Zn1...

Mandal, S. K.; Thompson, L. K.; Nag, K.; Charland, J.-P.; Gabe, E. J. (6) Can. J. Chem. 1987, 65, 2815. Das, R.; Nag, K. Inorg. Chem. 1991, 30. 2831.

McKervey, A.; Bohmer, V. Chem. Br. 1992, 724. Okada, Y.; Kasai, Y.; Ishii, F.; Nishimura, J. J. Chem. Soc., Chem. Commun. 1993, 976.

⁽⁹⁾ Grannas, M. J.; Hoskins, B. F.; Robson, R. J. Chem. Soc., Chem. Commun. 1990, 1644.

	compd		
	L _r H ₄ •4HCl•H ₂ O• CH ₃ OH•C ₂ H ₅ OH	[L _r Zn ^{II} ₄ (OH)(CH ₃ CO ₂) ₃ - (CH ₃ OH)]•1.5CH ₃ OH	[L _r Co ^{III} ₃ (OH)(CH ₃ CO ₂) ₃]- BF ₄ ·3.83H ₂ O
formula	C ₃₉ H ₆₀ Cl ₄ N ₄ O ₇	C ₄₃ H ₅₄ N ₄ O ₁₂ Zn ₄ ·1.5CH ₄ O	C42H50BC03F4N4O11.3.83H2O
fw	838.7	1128	1119.5
descrptn of cryst	colorless prism	colorless parallelepiped	brown monotruncated octahedron
cryst system	monoclinic	monoclinic	monoclinic
space group	$P2_1/c$ (No. 14)	C_2/c (No. 15)	$P2_1/n$ (No. 14)
a, Å	16.190(3)	34.213(9)	15.555(3)
b, Å	10.246(3)	16.028(3)	15.141(4)
c, Å	26.756(6)	20.640(3)	21.723(3)
β , deg	96.88(2)	119.17(2)	98.96(1)
V, Å ³	4406(3)	9883(8)	5054(3)
Ź	4	8	4
ρ (calcd), g cm ⁻¹	1.243	1.516	1.475
ρ (measd), g cm ⁻¹	1.27(1)	1.47(1)	1.53(1)
temp, K	293(1)	293(1)	293(1)
radiation (λ, \mathbf{A})	(-)	Mo K α , graphite monochromator (0.7)	10 69)
no. of int control reflns	3 measd every 9000 s; no significant variation	3 measd every 4800 s; no significant variation	3 measd every 3600 s;
F(000)	1784	4664	2310
cryst dimens (dist in mm from point within cryst)	\pm (001), 0.038; \pm (010), 0.288; \pm (100), 0.063	$\pm(100), 0.100; \pm(1\overline{1}0), 0.113; \pm(10\overline{1}), 0.200$	$\pm(001), 0.150; \pm(10\overline{1}), 0.093; \pm(110), 0.157; \pm(1\overline{1}0), 0.136; (\overline{11}2), 0.143$
<i>u</i> cm ⁻¹	2 72	20.0	10.5
transm factors (SHELX-76)	min 0.963 max 0.980	min 0 565 max 0 735	min 0.734 max 0.832
24 limits deg	2 < 24 < 45	2 < 24 < 45	2 < 24 < 45
hlk limits	2 2 20 2 40	2 2 20 2 45	2 2 20 2 45
L L	_2->17	0	1
	-2 -17	$0 \sim 29$	-1 - 10
κ I	28	$24 \rightarrow 24$	0
i mode	-2828	-24-24	-23-23
instrument	ω/20	Errof Norius CAD 4E differenteme	ω/20
nisti uniciti no. of rofine moosed	7415	Enral-Nomus CAD-4F unifactome	
no. of refins measu	7413	8190	/828
no. of unique refins	5/30 0.0126	6457	6608
K _{int}			0.018
no. of unique refins used	$2234 [1 > 2.5\sigma(1)]$	$41/1 [I > 2.5\sigma(I)]$	$4596 [I > 2\sigma(I)]$
refinement	full-matrix least squares	blocked full-matrix least squares	blocked full-matrix least squares
function minimized		$\sum w\Delta^2$, where $\Delta = F_0 - F_c $ (SHELX	76)
weighting scheme	$w = k / [\sigma F^2 + g F^2]$	$w = k / [\sigma F^2 + g F^2]$	unit weights
g	0.00065	0.0017	
	1.924	1.410	
tinal $R [= \sum \Delta / \sum F_0]$	0.076	0.046	0.076
final $R_{\rm w} \left[= \sum w^{1/2} \Delta / \sum w^{1/2} F_{\rm o} \right]$	0.072	0.044	
max shift/esd for non-H atoms	0.024	0.03	0.109 (U_{iso} of B1; max cation shift/ esd = 0.005)
max resid electron density, e Å ⁻³	0.73	0.42	1.09

Table 1. Crystal Data Together with Details of the Data Collection and Structure Refinements for L_rH_4 -4HCl·H₂O·CH₃OH·C₂H₅OH, $[L_rZn_4(OH)(CH_3CO_2)_3(CH_3OH)]$ -1.5CH₃OH, and $[L_rCo_3(OH)(CH_3CO_2)_3]BF_4$ -3.83H₂O

Zn2...Zn4 and the Zn3...Zn2...Zn4 planes is 39.3° . The "diagonal" Zn...Zn separations are 5.111(2) Å for Zn1...Zn3 and 3.468. (1) Å for Zn2...Zn4.

Each Zn is bound to L_r^4 by two phenolate oxygens and one nitrogen. An approximately centrally located hydroxide is strongly coordinated to Zn2 [2.029(3) Å] and Zn4 [2.012(5) Å], less strongly to Zn3 [2.267(5) Å], and weakly if at all to Zn1 [2.849(5) Å]. An acetate on the concave surface of the bowl bridges Zn2 and Zn4. A monodentate acetate completes the coordination sphere of Zn1 which has an irregular 4-coordinate geometry if the weak interaction with the central hydroxo ligand is ignored. Zn2 is of pseudooctahedral geometry with a coordinated methanol *trans* to the bridging acetate oxygen (O1AB). Zn3 with a monodentate acetate has an irregular 5-coordinate geometry intermediate between square pyramidal and trigonal bipyramidal; using the criterion τ for trigonality of 5-coordinate centers,¹⁰ according to which a square pyramidal geometry has $\tau = 0$ and a trigonal bipyramidal geometry has $\tau = 1$, Zn3 with $\tau = 0.41$ approximates to neither. Zn4 is 5-coordinate, being bonded to two phenolates and one nitrogen of L_r, to the central hydroxide, and to an oxygen of the bridging acetate; its geometry

approximates to square pyramidal ($\tau = 0.10$) with the acetato O2AB occupying the apical position.

The conformation of the macrocycle is such that N1–H and N3–H are directed outward from the molecular bowl and N2–H and N4–H are directed toward the inside of the bowl. In keeping with the bowl-like structure of the molecule, the four aromatic rings are all inclined on the same side of the average N₄ plane, the dihedral angles to that plane being 30.1, 46.9, 24.7, and 39.0° for the 100, 200, 300, and 400 rings, respectively.

¹³C and ¹H NMR spectra of a freshly dried sample of the tetrazinc complex in CDCl₃ are consistent with the presence of solution species undergoing rapid interconversion so as to produce an averaged arrangement with $C_{2\nu}$ symmetry, as shown in Figure 3, where the atom labeling used in the discussion below is shown. These interconversions render the four methylenes g, g', g'', g''' equivalent, the other four methylenes i, i', i'', i''' equivalent to each other but different from the g methylenes, the four aromatic nuclei equivalent, and the two monodentate acetates equivalent.

In the ¹H NMR spectrum, the bridging acetate methyl (1) produces a 3H singlet at $\delta 0.97$, and the two monodentate acetate methyls (m) produce a 6H singlet at $\delta 2.05$. The four ligand methyl groups (a) give rise to a 12H singlet at $\delta 2.18$. The aromatic protons (c and d) of four equivalent rings generate an AB quartet ($\delta 6.76$, 6.86; J = 2.3 Hz). Two broad peaks at $\delta 2.55$ and 3.06

⁽¹⁰⁾ Addison, A. W.; Rao, T. N.; Reedjik, J.; van Rijn, J.; Verschoor, G. C. J. Chem. Soc., Dalton Trans., 1984, 1349.

Figure 1. Front view (a) and side view (b) of $L_7H_8^{4+}$ with the associated Cl⁻, H₂O, CH₃OH, and C₂H₃OH, showing the atom-numbering scheme. Hydrogen bonds are indicated by thin dashed lines. Symmetry codes: I, x - 1, y, z; II, -x, $1^{1}/_{2} + y$, $-1/_{2} - z$; III, -x, $1^{1}/_{2} + y$, $1^{1}/_{2} - z$.

assigned to two sorts of N-H disappear upon D_2O exchange. The methylenes appear as complex multiplets as a result of coupling to NH superimposed on the geminal coupling, but these signals simplify upon D_2O exchange to two AB quartets, one widely spaced (δ 3.45, 4.42, 8H; J = 11.6 Hz) and the other closely spaced (δ 3.95, 3.98; J = 12.8 Hz).

The particularly simple ¹³C NMR spectrum is consistent with the above rapid interconversion to generate an averaged arrangement with C_{2v} symmetry: δ 20.05, four equivalent methyls (a); δ 22.7, 23.09 in roughly 1:2 proportions, methyls of bridging acetate (1) and two monodentate acetates (m), respectively; δ 52.50 and 54.25, almost same height, two different types of methylenes (g and i); δ 122.6, carbon para to phenolic O in all four equivalent aromatic nuclei (b); δ 124.6 and 125.1, carbons ortho to phenol (e/f); δ 131.1 and 131.4, meta carbons (c/d); δ 159.6, ipso carbons (h); δ 179.6 and 179.1 in roughly 1:2 proportions, carboxylate carbons of bridging acetate (k) and the two monodentate acetates (n, n'), respectively.

The averaged $C_{2\nu}$ arrangement apparent in the spectra is consistent with the bridging acetate inside the bowl remaining bound to the same pair of zincs throughout the interconversions, thereby preventing the bowl from turning inside out. Rapid exchange of the "central" hydroxide between a position considerably closer to Zn3 than to Zn1 (as in Figure 2) and an analogous position closer to Zn1 than to Zn3 together with conformational flexing of L_r renders Zn1 equivalent to Zn3, Zn2 equivalent to Zn4, all four methylenes, g, g', g'' equivalent, and so on.

 $[L_rCo^{III}_3(OH)(CH_3CO_2)_3]BF_4$. In initial attempts to isolate a polycobalt complex of L_r free of chloride, crude L_rH_4 was first converted to presumed L_rH_4 ·4HBF₄ (uncharacterized) by concentrating a solution to which HBF₄ had been added. When a suspension of this salt in hot water was treated with methanolic solutions of cobaltous acetate, tetraethylammonium hydroxide, and tetrabutylammonium tetrafluoroborate in approximately 1:5: 10:5 proportions, the suspended salt dissolved and a small amount of dirty pink solid remained undissolved. The latter was removed by filtration, and the filtrate was concentrated and allowed to

Table 2. Final Atomic Coordinates and Equivalent Isotropic Displacement Parameters $(Å^2)$ for L_rH₄·4HCl·H₂O· CH₃OH·C₂H₅OH (Esd Values in Parentheses)

atom	x	У	Z	$U_{eq}{}^a$
Cl1	0.0142(2)	0.8541(3)	0.1838(1)	0.0444(8)
Cl2	0.0441(2)	0.2536(4)	0.1949(1)	0.0470(9)
C13	0.0035(2)	0.2662(4)	-0.0051(1)	0.052(1)
C14	0.5022(3)	0.8243(4)	0.2407(2)	0.084(1)
O 1	0.1348(6)	0.5340(8)	0.3160(3)	0.042(2)
O2	-0.1890(6)	0.4656(8)	0.3143(3)	0.039(2)
O3	-0.1561(5)	0.5336(9)	0.1967(3)	0.038(2)
O4	0.1847(5)	0.4485(8)	0.2003(3)	0.036(2)
N 1	0.2880(6)	0.5759(9)	0.2766(3)	0.030(2)
N2	-0.0110(6)	0.6101(9)	0.4050(3)	0.027(2)
N3	-0.2987(6)	0.5787(9)	0.2359(3)	0.030(2)
N4	0.0040(6)	0.5991(9)	0.1124(3)	0.027(2)
C101	0.1653(8)	0.6202(12)	0.3532(5)	0.035(2)
C102	0.2270(8)	0.7056(12)	0.3409(4)	0.030(2)
C103	0.2624(8)	0.7943(12)	0.3761(5)	0.038(2)
C104	0.2392(10)	0.7986(13)	0.4238(5)	0.045(2)
C105	0.1786(8)	0.7164(12)	0.4358(4)	0.038(2)
C106	0.1413(8)	0.62/5(12)	0.4015(4)	0.031(2)
C107	0.2818(10)	0.8944(13)	0.4629(4)	0.056(2)
CII	0.2514(9)	0.7070(11)	0.28/4(4)	0.038(2)
C12	0.0718(8)	0.5412(11)	0.4162(4)	0.029(2)
C201	-0.2096(9)	0.5592(12)	0.3440(5)	0.032(2)
C202	-0.1053(8)	0.5953(12)	0.389/(5)	0.032(2)
C203	-0.1942(6)	0.09/0(11)	0.4184(4)	0.029(2)
C204	-0.20/2(8)	0.7035(12)	0.4024(4)	0.033(2)
C203	-0.3123(8)	0.7247(12)	0.3373(4)	0.038(2)
C200	-0.2637(8)	0.0244(12)	0.3280(4)	0.031(2)
C207	-0.2997(9)	0.6713(13) 0.5269(12)	0.4339(3)	0.034(2)
C22	-0.0800(9)	0.5208(12) 0.5778(12)	0.4113(4)	0.038(2)
C201	-0.3396(6)	0.5776(13) 0.6335(13)	0.2034(4) 0.1507(4)	0.037(2)
C302	-0.1800(9) -0.2456(8)	0.0223(12) 0.7059(12)	0.137(4) 0.1678(5)	0.034(2)
C302	-0.2430(8)	0.7039(12) 0.7895(12)	0.1078(3) 0.1298(4)	0.032(2)
C304	-0.2779(0)	0.7893(12) 0.7924(12)	0.1298(4)	0.033(2)
C305	-0.1815(8)	0.7924(12) 0.7105(13)	0.0057(5)	0.034(2)
C306	-0.1013(8)	0.6213(12)	0.0704(3) 0.1136(4)	0.037(2)
C307	-0.2828(9)	0.8857(12)	0.0439(5)	0.052(2)
C33	-0.2737(8)	0.7123(12)	0.2188(4)	0.052(2)
C34	-0.0794(8)	0.5302(11)	0.1028(4)	0.032(2)
C401	0.2046(8)	0.5452(12)	0.1689(5)	0.032(2)
C402	0.1560(9)	0.5759(13)	0.1225(4)	0.036(2)
C403	0.1864(8)	0.6737(12)	0.0926(4)	0.028(2)
C404	0.2604(8)	0.7393(13)	0.1060(4)	0.033(2)
C405	0.3037(8)	0.7077(11)	0.1517(4)	0.027(2)
C406	0.2788(8)	0.6120(12)	0.1828(4)	0.031(2)
C407	0.2919(8)	0.8427(13)	0.0717(4)	0.045(2)
C41	0.3324(8)	0.5751(13)	0.2296(4)	0.036(2)
C44	0.0742(8)	0.5092(12)	0.1053(5)	0.037(2)
OW	-0.0057(5)	0.0531(8)	0.2797(3)	0.041(2)
ОМ	0.4303(7)	0.5037(9)	0.3383(4)	0.079(3)
СМ	0.4771(15)	0.589(2)	0.3878(8)	0.186(5)
OE	0.5725(7)	0.4574(10)	0.1732(4)	0.079(3)
C1E	0.5124(14)	0.533(2)	0.1407(8)	0.133(5)
C2E	0.525(2)	0.581(2)	0.0974(9)	0.206(5)
HIW	-0.027(5)	0.618(6)	0.250(4)	0.142(6)
H2W	0.000(5)	0.486(6)	0.233(4)	0.142(6)
HO2	-0.146(4)	0.441(5)	0.308(3)	0.017(6)
HO3	-0.097(4)	0.527(5)	0.199(3)	0.017(6)
HIM	0.4389(-)	0.4407(-)	0.3305(-)	0.142(6)
HIE	0.5548(-)	0.4066(-)	0.1980(-)	0.142(6)

 ${}^{a} U_{eq} = \frac{1}{3} \sum_{i} \sum_{j} [U_{ij}(\mathbf{a}^{*}_{i} \mathbf{a}^{*}_{j})(\mathbf{a}_{i} \cdot \mathbf{a}_{j})].$

cool. Black platelike crystals separated over a period of several days. The crystals after being dried in vacuum and then exposed to the atmosphere had an elemental composition consistent with the formulation $[L_rCo^{III}_3(OH)(CH_3CO_2)_3]BF_4$ ·5H₂O whereas an X-ray crystallographic analysis of a crystal sealed with mother liquor indicated the presence of 3.83 H₂O. Crystals suitable for X-ray studies were obtained by slow diffusion in air of water vapor into a reaction mixture in methanol containing the presumed L_rH_4 ·4HBF₄ and 5 equiv of cobaltous acetate. After the structural study was complete, it was found that chloride did not in fact

Figure 2. Structure and atom-numbering scheme for $[L_r Zn^{II}_4(OH)(CH_3-CO_2)_3(CH_3OH)]$.

Table 3. Selected Interatomic Distances (Å) and Angles (deg) for L_rH_4 ·4HCl·H₂O·CH₃OH·C₂H₅OH

Distances ^a				
Cl101	3.036(10)	Cl4OE	3.049(12)	
Cl1O2	3.047(10)	01N1	2.841(14)	
Cl1 ^{III} ····N4	3.229(9)	O2…N3	2.829(12)	
Cl1OW	3.243(9)	O3N3	2.688(13)	
Cl2O4	3.019(9)	O3OW	2.628(11)	
Cl2 ^{III} N2	3.041(9)	04…N1	2.802(11)	
Cl2 ^{III} ···OW	3.234(9)	N1OM	2.769(14)	
Cl2 ¹¹ N4	3.175(9)	N3OE ^I	2.805(14)	
Cl4OM	3.097(12)	N4OW	2.922(11)	
phenolic C-O	1.31(2)-1.377(1:	5) arom C–C	1.34(2)-1.42(2)	
N–C	1.49(2)-1.52(2)	other C-C	1.48(2)-1.54(2)	
Angles				
C-N-C 111.5	5(8)-115.0(8)	Č–C–C angle	116.8(9)-123.4(9)	
C-C-N 108.8	3(8)-114.2(9)	at arom C's	· · · · ·	

^a Symmetry codes: I, x - 1, y, z; II, $-\bar{x}$, $1^{1}/_{2} + y$, $-\frac{1}{_{2}} - z$; III, -x, $1^{1}/_{2} + y$, $\frac{1}{_{2}} - z$.

interfere and that the same product could be obtained more straightforwardly using L_rH_4C4HCl without conversion to the BF_4 -salt.

The X-ray analysis revealed that the asymmetric unit consists of $[L_rCo^{III}_3(OH)(CH_3CO_2)_3]^+$ cations, a BF₄⁻ anion distributed over two sites, and water of solvation. Two views of the cation and the atom-numbering scheme are given in Figure 4. Atomic coordinates are given in Table 6, and selected interatomic distances and angles are given in Table 7.

The cation adopts a saddle-shaped conformation with three Co(III) ions in a triangular arrangement [Co1...Co2, 2.851(2) Å; Co1...Co3, 3.369(3) Å; Co2...Co3, 2.804(2) Å]. The fourth nucleation site provided by L_r^4 is vacant. Each of the three metals is essentially octahedral, the macrocyclic ligand providing two phenolate oxygen donors and one amine nitrogen donor to each, meridional at Co1 and Co3 and facial at Co2. A pyramidal μ_3 -hydroxide is almost equidistant from the three cobalts and is 0.667 Å below the Co_3 plane. Two acetate coligands on the same side of the Co₃ plane as the hydroxide bridge from Co1 to Co2 and from Co3 to Co2 such that they are cis at Co2. A third μ_2 -acetate on the opposite side of the Co₃ plane bridges from Co1 to Co3 so the two acetates bound to each of these centers are trans to each other. The hydrogens of the three coordinating amines are mutually syn on the same side of the Co3 plane as the hydroxide. The two bridging phenoxide oxygen centers, O1 and O2, are markedly pyramidal [sums of bond angles 338(2) and 336(2)°, respectively] as can be seen in Figure 4.

Table 4. Final Atomic Coordinates and Equivalent Isotropic Displacement Parameters $(Å^2)$ for $[L_rZn_4(OH)(CH_3CO_2)_3-(CH_3OH)]$ -1.5CH₃OH (Esd Values in Parentheses)

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	atom	x	У	Z	$U_{\rm eq}{}^a$
$ \begin{array}{ccccc} 2 \\ 2 \\ 2 \\ 2 \\ 3 \\ 0.10832(3) \\ 0.12158(5) \\ 0.68720(5) \\ 0.09470(3) \\ 0.19085(6) \\ 0.53861(5) \\ 0.0475(2) \\ 0.0047(3) \\ 0.19085(6) \\ 0.53861(5) \\ 0.0475(2) \\ 0.0475(2) \\ 0.006722(14) \\ 0.11998(3) \\ 0.6083(2) \\ 0.0401(1) \\ 0 \\ 0.006722(14) \\ 0.11998(3) \\ 0.6083(2) \\ 0.0401(1) \\ 0 \\ 0.006722(14) \\ 0.11998(3) \\ 0.6083(2) \\ 0.0401(1) \\ 0 \\ 0.006722(14) \\ 0.11998(3) \\ 0.6083(2) \\ 0.0401(1) \\ 0.0042(1) \\ 0.008(1) \\ 0.0042(1) \\ 0.008(2) \\ 0.008(2) \\ 0.008(3) \\ 0.008(2) \\ 0.008(3) \\ 0.008(3) \\ 0.008(1) \\ 0.008(1) \\ 0.008(2) \\ 0.008(3) \\ 0.008(1) \\ 0.008(1) \\ 0.008(1) \\ 0.008(1) \\ 0.008(1) \\ 0.008(1) \\ 0.008(1) \\ 0.008(1) \\ 0.008(1) \\ 0.008(2) \\ 0.008(3) \\ 0.008(1) \\ 0.008(1) \\ 0.008(1) \\ 0.008(2) \\ 0.008(1) \\ 0.008(2) \\ 0.008(1) \\ 0.008(2) \\ 0.008(1) \\ 0.008(2) \\ 0.008(1) \\ 0.008(2) \\ 0.008(1) \\ 0.008(2) \\ 0.008(1) \\ 0.008(2) \\ 0.008(1) \\ 0.008(2) \\ 0.008($	Znl	0.13648(3)	0.03837(6)	0.47442(5)	0.0402(2)
Zn3 0.10832(3) 0.12158(5) 0.68720(5) 0.0383(1) Ca 0.09470(3) 0.1908(6) 0.53861(5) 0.0475(2) O1 0.19174(14) 0.0037(3) 0.5649(2) 0.0475(2) O3 0.06722(14) 0.1198(3) 0.6083(2) 0.040(1) O3 0.06722(14) 0.198(3) 0.6083(2) 0.042(1) N1 0.16580(2) 0.0612(4) 0.4774(3) 0.039(1) N3 0.1149(2) 0.2029(4) 0.7712(3) 0.038(1) N4 0.0486(2) 0.2785(4) 0.4654(3) 0.040(1) O1A 0.0815(3) -0.0920(5) 0.4149(4) 0.053(2) C2A1 0.0485(3) -0.0374(4) 0.681(3) 0.065(1) O1A3 0.0680(3) -0.7974(6) 0.7349(6) 0.010(2) O1A3 0.0680(3) -0.7974(6) 0.7349(6) 0.010(2) O1A3 0.0680(3) -0.7974(6) 0.7349(6) 0.010(2) O1A3 0.0480(3) -0.0571(6) 0.7349(6)	Zn2	0.18468(3)	0.06356(6)	0.65007(4)	0.0402(2)
$ \begin{array}{ccccc} 2.4 & 0.09470(3) & 0.59861(5) & 0.0475(2) \\ 0.1 & 0.19174(14) & 0.0037(3) & 0.5649(2) & 0.038(1) \\ 0.2 & 0.17420(14) & 0.1151(3) & 0.7324(2) & 0.040(1) \\ 0.3 & 0.06722(14) & 0.1198(3) & 0.6083(2) & 0.042(1) \\ N1 & 0.16580(2) & 0.0612(4) & 0.4119(3) & 0.042(1) \\ N1 & 0.16580(2) & 0.0612(4) & 0.4712(3) & 0.038(1) \\ N2 & 0.2517(2) & 0.0446(4) & 0.7774(3) & 0.039(1) \\ N3 & 0.1149(2) & 0.2029(4) & 0.7712(3) & 0.038(1) \\ N4 & 0.0486(2) & 0.2785(4) & 0.4654(3) & 0.040(1) \\ O1B & 0.11751(13) & 0.0808(3) & 0.5903(2) & 0.036(1) \\ O1A1 & 0.0876(2) & -0.0334(4) & 0.4608(3) & 0.057(1) \\ O2A1 & 0.1046(2) & -0.0934(4) & 0.3850(3) & 0.068(1) \\ O2A3 & 0.0649(2) & 0.0387(4) & 0.631(3) & 0.066(1) \\ C1A3 & 0.0649(2) & 0.0387(4) & 0.631(3) & 0.065(1) \\ O2A3 & 0.1200(2) & -0.0435(4) & 0.7546(3) & 0.066(1) \\ C1A3 & 0.0802(3) & -0.0242(6) & 0.7225(4) & 0.054(2) \\ O1AB & 0.20232(15) & 0.1775(3) & 0.6205(3) & 0.050(1) \\ O2AB & 0.1473(2) & 0.2684(3) & 0.5952(3) & 0.048(1) \\ O1AB & 0.20232(15) & 0.1775(3) & 0.6205(3) & 0.051(2) \\ C2AB & 0.1873(3) & 0.2490(5) & 0.6135(4) & 0.051(2) \\ C1AB & 0.1873(3) & 0.2490(5) & 0.6135(4) & 0.051(2) \\ C1AB & 0.1873(2) & -0.0610(3) & 0.6890(3) & 0.054(1) \\ O111 & 0.1586(2) & -0.0162(5) & 0.5327(3) & 0.048(1) \\ O111 & 0.1688(2) & -0.0163(5) & 0.5153(4) & 0.045(2) \\ C102 & 0.2383(2) & -0.0018(5) & 0.5153(4) & 0.045(2) \\ C103 & 0.2811(2) & -0.0063(5) & 0.5153(4) & 0.043(2) \\ C104 & 0.3195(2) & -0.012(5) & 0.827(4) & 0.043(2) \\ C105 & 0.32125(2) & -0.0215(6) & 0.589(4) & 0.039(2) \\ C101 & 0.2238(2) & -0.0018(5) & 0.5162(4) & 0.039(2) \\ C101 & 0.2238(2) & -0.0018(5) & 0.5153(4) & 0.045(2) \\ C101 & 0.2238(2) & -0.0018(5) & 0.5153(4) & 0.045(2) \\ C101 & 0.2238(2) & -0.0018(5) & 0.5502(4) & 0.043(2) \\ C102 & 0.2383(2) & -0.0121(5) & 0.8295(4) & 0.038(2) \\ C101 & 0.2383(2) & -0.0121(5) & 0.8295(4) & 0.036(2) \\ C202 & 0.258(2) & 0.0215(5) & 0.837(4) & 0.045(2) \\ C203 & 0.0318(2) & 0.2645(5) & 0.775(4) & 0.046(2) \\ C204 & 0.076(2) & 0.2645(5) & 0.775(4) & 0.046(2) \\ C204 & 0.076(2) & 0.2645(5) & 0.775(4)$	Zn3	0.10832(3)	0.12158(5)	0.68720(5)	0.0383(2)
$\begin{array}{ccccc} 0.19142(14) & 0.1031(3) & 0.5849(2) & 0.038(1)\\ 02 & 0.17420(14) & 0.1131(3) & 0.7324(2) & 0.040(1)\\ 03 & 0.06722(14) & 0.1998(3) & 0.6083(2) & 0.041(1)\\ 04 & 0.11049(15) & 0.1532(3) & 0.4597(2) & 0.042(1)\\ N1 & 0.15580(2) & 0.0612(4) & 0.4119(3) & 0.039(1)\\ N2 & 0.2517(2) & 0.0446(4) & 0.7274(3) & 0.038(1)\\ N3 & 0.1149(2) & 0.2029(4) & 0.7712(3) & 0.038(1)\\ N4 & 0.0486(2) & 0.2785(4) & 0.4654(3) & 0.040(1)\\ 01B & 0.11751(13) & 0.0808(3) & 0.5903(2) & 0.036(1)\\ 01A1 & 0.0876(2) & -0.0334(4) & 0.4608(3) & 0.057(1)\\ 02A1 & 0.1046(2) & -0.0993(4) & 0.3850(3) & 0.057(1)\\ 02A1 & 0.1046(2) & -0.0993(4) & 0.3850(3) & 0.068(1)\\ C1A1 & 0.0815(3) & -0.0920(5) & 0.4149(4) & 0.053(2)\\ C2A3 & 0.0429(2) & 0.0387(4) & 0.7846(3) & 0.066(1)\\ 02A3 & 0.0649(2) & 0.0387(4) & 0.7349(6) & 0.109(2)\\ 01AB & 0.20232(15) & 0.177(3) & 0.6205(3) & 0.050(1)\\ 02AB & 0.1473(2) & 0.2684(3) & 0.5952(3) & 0.054(2)\\ C2AB & 0.2188(3) & 0.3189(6) & 0.6270(8) & 0.143(3)\\ 01M1 & 0.1688(2) & -0.0610(3) & 0.6890(3) & 0.054(1)\\ C1M1 & 0.1506(3) & -0.1339(6) & 0.6466(5) & 0.091(2)\\ C104 & 0.2382(2) & -0.0018(5) & 0.5062(4) & 0.037(2)\\ C103 & 0.2811(2) & -0.0063(5) & 0.5132(4) & 0.046(2)\\ C104 & 0.2136(2) & -0.018(5) & 0.502(4) & 0.037(2)\\ C105 & 0.3125(2) & -0.0227(5) & 0.6429(4) & 0.043(2)\\ C107 & 0.3238(2) & -0.018(4) & 0.578(4) & 0.038(2)\\ C107 & 0.3284(2) & -0.018(4) & 0.578(4) & 0.038(2)\\ C107 & 0.3253(2) & -0.0215(6) & 0.5902(5) & 0.037(2)\\ C103 & 0.2811(2) & -0.0025(5) & 0.527(4) & 0.046(2)\\ C204 & 0.2746(2) & 0.2325(5) & 0.3134(4) & 0.046(2)\\ C205 & 0.2308(2) & 0.2611(5) & 0.3812(4) & 0.046(2)\\ C206 & 0.2707(2) & -0.018(4) & 0.578(4) & 0.038(2)\\ C207 & 0.3112(3) & 0.2761(6) & 0.980(4) & 0.036(2)\\ C203 & 0.2824(2) & 0.1615(5) & 0.3814(4) & 0.043(2)\\ C204 & 0.0746(2) & 0.2325(5) & 0.559(4) & 0.036(2)\\ C205 & 0.2308(2) & 0.2691(5) & 0.535(4) & 0.046(2)\\ C204 & 0.0746(2) & 0.238(5) & 0.559(4) & 0.046(2)\\ C205 & 0.2308(2) & 0.269(5) & 0.4581(4) & 0.043(2)\\ C204 & 0.0746(2) & 0.238(5) & 0.559(4) & 0.046(2)\\ C204 & 0.0796(2) & 0.269(5) & 0.4$	Zn4	0.09470(3)	0.19085(6)	0.53861(5)	0.0475(2)
O3 0.06722(14) 0.1998(3) 0.6083(2) 0.041(1) O4 0.11049(15) 0.1532(3) 0.4597(2) 0.042(1) N1 0.16580(2) 0.0612(4) 0.4119(3) 0.042(1) N2 0.2517(2) 0.0446(4) 0.7712(3) 0.038(1) N3 0.1149(2) 0.2029(4) 0.7712(3) 0.038(1) N4 0.0485(2) 0.2785(4) 0.4654(3) 0.046(1) O1B 0.11751(13) 0.0808(3) 0.5903(2) 0.036(1) O2A1 0.0487(2) -0.0334(4) 0.4608(3) 0.057(1) O2A1 0.0487(2) -0.0337(4) 0.6631(3) 0.066(1) C1A1 0.0815(3) -0.0242(6) 0.7225(4) 0.054(2) O1A3 0.0487(3) -0.07349(6) 0.1042(1) 0.046(1) O1A3 0.0487(3) -0.249(5) 0.6135(4) 0.051(2) O2AB 0.1473(2) 0.2684(3) 0.5952(3) 0.048(1) O1AB 0.22321(2) -0.0133(6) 0.6646(5)	$\frac{01}{02}$	0.19174(14) 0.17420(14)	0.0037(3) 0.1151(3)	0.3049(2)	0.038(1) 0.040(1)
04 0.11049(15) 0.1522(3) 0.4597(2) 0.042(1) N1 0.16580(2) 0.0612(4) 0.4119(3) 0.042(1) N2 0.2517(2) 0.0446(4) 0.7712(3) 0.038(1) N3 0.1149(2) 0.2029(4) 0.7712(3) 0.038(1) N4 0.0486(2) 0.2738(4) 0.4654(3) 0.040(1) O1B 0.11751(13) 0.0808(3) 0.5903(2) 0.038(1) O2A1 0.1046(2) -0.0993(4) 0.3850(3) 0.056(1) O2A3 0.1202(2) -0.0435(4) 0.4581(3) 0.055(1) O2A3 0.1202(2) -0.0435(4) 0.7346(6) 0.054(2) C2A3 0.0487(3) -0.0787(6) 0.7349(6) 0.100(2) O1AB 0.1473(2) 0.2684(3) 0.5952(3) 0.048(1) C1AB 0.1873(3) 0.2490(5) 0.6135(4) 0.051(2) C2AB 0.1473(2) -0.0610(3) 0.6890(3) 0.054(1) C1AB 0.1873(3) 0.2490(5) 0.6135(4) <	03	0.06722(14)	0.1998(3)	0.7324(2) 0.6083(2)	0.040(1)
N1 0.16580(2) 0.0612(4) 0.4119(3) 0.042(1) N2 0.2517(2) 0.0446(4) 0.7274(3) 0.038(1) N3 0.1149(2) 0.2029(4) 0.7712(3) 0.038(1) N4 0.0486(2) 0.2785(4) 0.4654(3) 0.040(1) OIA1 0.0876(2) -0.0331(4) 0.4608(3) 0.057(1) OZA1 0.1046(2) -0.0993(4) 0.3850(3) 0.068(1) CIA1 0.0815(3) -0.0135(6) 0.4419(4) 0.053(2) OIA3 0.0649(2) 0.0387(4) 0.6831(3) 0.066(1) CIA3 0.0649(2) 0.0387(4) 0.6831(3) 0.066(1) CIA3 0.0487(3) -0.0737(6) 0.7349(6) 0.100(2) OIAB 0.20232(15) 0.1775(3) 0.6205(3) 0.051(1) CIAB 0.1473(2) 0.2684(3) 0.5952(3) 0.048(1) CIAB 0.1473(2) 0.2684(3) 0.5952(3) 0.054(1) CIAB 0.1473(2) 0.2684(3) 0.5952(3) <	0 4	0.11049(15)	0.1532(3)	0.4597(2)	0.042(1)
N2 0.2517(2) 0.0446(4) 0.7274(3) 0.038(1) N3 0.1149(2) 0.2029(4) 0.7712(3) 0.038(1) N4 0.0486(2) 0.2735(4) 0.4654(3) 0.040(1) OIB 0.11751(13) 0.0808(3) 0.5903(2) 0.036(1) OIA1 0.0876(2) -0.0334(4) 0.4608(3) 0.057(1) OZA1 0.0453(3) -0.0920(5) 0.4149(4) 0.053(2) C2A1 0.0453(3) -0.0378(4) 0.6831(3) 0.066(1) OIA3 0.0602(2) -0.0435(4) 0.7546(3) 0.066(1) C2A3 0.1200(2) -0.0435(4) 0.7546(3) 0.066(1) OIAB 0.20232(15) 0.1775(3) 0.6205(3) 0.050(1) OZAB 0.1473(2) 0.2684(3) 0.5952(3) 0.048(1) CIAB 0.1873(3) 0.2490(5) 0.6135(4) 0.051(2) CAAB 0.1473(2) -0.0610(3) 0.6890(3) 0.054(1) CIAB 0.1873(3) 0.2490(5) 0.6135(4)	N 1	0.16580(2)	0.0612(4)	0.4119(3)	0.042(1)
N3 0.1149(2) 0.2029(4) 0.7712(3) 0.038(1) N4 0.0486(2) 0.2785(4) 0.4654(3) 0.040(1) O1B 0.11751(13) 0.0808(3) 0.5903(2) 0.036(1) OLA1 0.0876(2) -0.0934(4) 0.4608(3) 0.057(1) OZA1 0.1046(2) -0.0920(5) 0.4149(4) 0.053(2) CA1 0.0453(3) -0.1536(6) 0.4014(6) 0.097(2) OIA3 0.0649(2) -0.0387(4) 0.6831(3) 0.065(1) OZA3 0.1200(2) -0.0435(4) 0.7724(4) 0.054(2) C2A3 0.0487(3) -0.0242(6) 0.7225(4) 0.054(2) C2A3 0.0487(3) -0.2424(6) 0.7225(4) 0.054(2) C1AB 0.1873(3) 0.2490(5) 0.6135(4) 0.051(2) C2AB 0.1473(2) 0.2684(3) 0.5952(3) 0.048(1) C1M1 0.1506(3) -0.1339(6) 0.6456(5) 0.091(2) C101 0.2328(2) -0.0018(5) 0.5153(4)	N2	0.2517(2)	0.0446(4)	0.7274(3)	0.039(1)
N4 0.0486(2) 0.2785(4) 0.4453(3) 0.044011 O1B 0.11751(13) 0.0808(3) 0.5903(2) 0.036(1) O1A1 0.0876(2) -0.0334(4) 0.4608(3) 0.057(1) OZA1 0.0445(2) -0.0920(5) 0.4149(4) 0.053(2) OZA3 0.1200(2) -0.0435(4) 0.7546(3) 0.066(1) C1A3 0.0649(2) -0.0387(4) 0.6831(3) 0.065(1) OZA3 0.1200(2) -0.0435(4) 0.7546(3) 0.066(1) C1A3 0.0649(2) 0.0387(4) 0.6831(3) 0.065(1) OZA3 0.1200(2) -0.0435(4) 0.7546(3) 0.056(1) C1A3 0.0487(3) -0.0787(6) 0.7349(6) 0.100(2) O1A4 0.1473(2) 0.2684(3) 0.5952(3) 0.050(1) C2AB 0.1473(3) 0.2490(5) 0.6135(4) 0.051(2) C1M1 0.1688(2) -0.0101(3) 0.6890(3) 0.054(1) 0.317(2) C101 0.2328(2) -0.0161(5)	N3	0.1149(2)	0.2029(4)	0.7712(3)	0.038(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N4 01 P	0.0486(2)	0.2785(4)	0.4654(3)	0.040(1)
$\begin{array}{c cccc} 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.000000$		0.11731(13) 0.0876(2)	-0.0306(3)	0.3903(2) 0.4608(3)	0.030(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	02A1	0.1046(2)	-0.0993(4)	0.3850(3)	0.057(1) 0.068(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1A1	0.0815(3)	-0.0920(5)	0.4149(4)	0.053(2)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C2A1	0.0453(3)	-0.1536(6)	0.4014(6)	0.097(2)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O1A3	0.0649(2)	0.0387(4)	0.6831(3)	0.065(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O2A3	0.1200(2)	-0.0435(4)	0.7546(3)	0.066(1)
$\begin{array}{ccccccc} C1AB & 0.2023(15) & 0.1775(3) & 0.6205(3) & 0.050(1)\\ O2AB & 0.1473(2) & 0.2684(3) & 0.5952(3) & 0.048(1)\\ C1AB & 0.1873(3) & 0.2490(5) & 0.6135(4) & 0.051(2)\\ C2AB & 0.2188(3) & 0.3189(6) & 0.6270(8) & 0.143(3)\\ O1M1 & 0.1688(2) & -0.0610(3) & 0.6890(3) & 0.054(1)\\ C1M1 & 0.1506(3) & -0.1339(6) & 0.6466(5) & 0.091(2)\\ C101 & 0.2328(2) & -0.0039(4) & 0.5689(4) & 0.037(2)\\ C102 & 0.2383(2) & -0.0018(5) & 0.5062(4) & 0.039(2)\\ C103 & 0.2811(2) & -0.0063(5) & 0.5153(4) & 0.045(2)\\ C104 & 0.3195(2) & -0.0162(5) & 0.5827(4) & 0.046(2)\\ C105 & 0.3125(2) & -0.0227(5) & 0.6429(4) & 0.043(2)\\ C106 & 0.2707(2) & -0.0180(4) & 0.6378(4) & 0.038(2)\\ C107 & 0.3653(2) & -0.021(5) & 0.4279(4) & 0.043(2)\\ C110 & 0.2056(2) & -0.021(5) & 0.4279(4) & 0.043(2)\\ C12 & 0.2672(2) & -0.0313(5) & 0.7071(4) & 0.046(2)\\ C201 & 0.2056(2) & 0.1548(4) & 0.7933(4) & 0.034(2)\\ C202 & 0.2493(2) & 0.1207(5) & 0.8295(4) & 0.036(1)\\ C203 & 0.2824(2) & 0.1615(5) & 0.8912(4) & 0.043(2)\\ C204 & 0.2746(2) & 0.2332(5) & 0.9194(4) & 0.043(2)\\ C205 & 0.2308(2) & 0.2631(5) & 0.8844(4) & 0.043(2)\\ C206 & 0.1968(2) & 0.2265(5) & 0.8224(4) & 0.036(2)\\ C205 & 0.2308(2) & 0.2631(5) & 0.8844(4) & 0.043(2)\\ C206 & 0.1968(2) & 0.2265(5) & 0.8224(4) & 0.036(2)\\ C207 & 0.3112(3) & 0.2761(6) & 0.9880(4) & 0.063(2)\\ C203 & 0.0310(2) & 0.3692(5) & 0.6851(4) & 0.043(2)\\ C303 & 0.0310(2) & 0.3692(5) & 0.6851(4) & 0.043(2)\\ C304 & 0.0053(2) & 0.4181(5) & 0.6235(5) & 0.047(2)\\ C305 & -0.007(2) & 0.3893(5) & 0.5592(4) & 0.043(2)\\ C304 & 0.0053(2) & 0.4181(5) & 0.6235(5) & 0.047(2)\\ C304 & 0.0053(2) & 0.4181(5) & 0.6235(5) & 0.047(2)\\ C304 & 0.0053(2) & 0.2644(5) & 0.3710(4) & 0.048(2)\\ C403 & 0.0719(3) & 0.3158(5) & 0.5592(4) & 0.043(2)\\ C305 & -0.0071(2) & 0.3893(5) & 0.5592(4) & 0.045(2)\\ C304 & 0.0053(2) & 0.2645(5) & 0.3710(4) & 0.048(2)\\ C405 & 0.1412(3) & 0.2615(5) & 0.3358(4) & 0.045(2)\\ C304 & 0.0053(2) & 0.2645(5) & 0.3710(4) & 0.048(2)\\ C407 & 0.1024(3) & 0.3697(6) & 0.2358(5) & 0.077(2)\\ C404 & 0.1056(3) & 0.3158(5) & 0.3364(4) & 0.045(2)\\ C405 & 0.$	CIAS	0.0802(3)	-0.0242(6)	0.7225(4)	0.054(2)
$\begin{array}{c cccc} 02AB & 0.1473(2) & 0.2684(3) & 0.595(2) & 0.048(1) \\ C1AB & 0.1873(3) & 0.2490(5) & 0.6135(4) & 0.051(2) \\ C2AB & 0.2188(3) & 0.3189(6) & 0.6270(8) & 0.143(3) \\ 01M1 & 0.1688(2) & -0.0610(3) & 0.6890(3) & 0.054(1) \\ C1M1 & 0.1506(3) & -0.1339(6) & 0.6466(5) & 0.091(2) \\ C101 & 0.2328(2) & -0.0039(4) & 0.5689(4) & 0.037(2) \\ C102 & 0.2383(2) & -0.0018(5) & 0.5062(4) & 0.039(2) \\ C103 & 0.2811(2) & -0.0063(5) & 0.5153(4) & 0.045(2) \\ C104 & 0.3195(2) & -0.0162(5) & 0.5827(4) & 0.046(2) \\ C105 & 0.3125(2) & -0.0227(5) & 0.6429(4) & 0.043(2) \\ C106 & 0.2707(2) & -0.0180(4) & 0.6378(4) & 0.038(2) \\ C107 & 0.3653(2) & -0.0215(6) & 0.5902(5) & 0.073(2) \\ C111 & 0.2006(2) & -0.0021(5) & 0.4279(4) & 0.043(2) \\ C122 & 0.2672(2) & -0.0313(5) & 0.7071(4) & 0.046(2) \\ C201 & 0.2056(2) & 0.1207(5) & 0.8295(4) & 0.036(1) \\ C203 & 0.2824(2) & 0.1615(5) & 0.8912(4) & 0.042(2) \\ C204 & 0.2746(2) & 0.2332(5) & 0.9194(4) & 0.045(2) \\ C205 & 0.2308(2) & 0.2631(5) & 0.8844(4) & 0.043(2) \\ C206 & 0.1968(2) & 0.2265(5) & 0.8284(4) & 0.036(2) \\ C207 & 0.3112(3) & 0.2761(6) & 0.9880(4) & 0.063(2) \\ C202 & 0.0518(2) & 0.22643(5) & 0.7856(4) & 0.043(2) \\ C301 & 0.0470(2) & 0.2691(5) & 0.6188(4) & 0.043(2) \\ C302 & 0.0518(2) & 0.2949(4) & 0.6839(4) & 0.063(2) \\ C205 & 0.0308(2) & 0.2631(5) & 0.7856(4) & 0.041(2) \\ C301 & 0.0470(2) & 0.2691(5) & 0.6188(4) & 0.043(2) \\ C303 & 0.0310(2) & 0.3692(5) & 0.6851(4) & 0.045(2) \\ C304 & 0.0053(2) & 0.4181(5) & 0.6235(5) & 0.047(2) \\ C305 & -0.0071(2) & 0.3893(5) & 0.5559(4) & 0.045(2) \\ C304 & 0.0053(2) & 0.4181(5) & 0.6235(5) & 0.047(2) \\ C403 & 0.0719(3) & 0.3158(5) & 0.3710(4) & 0.049(2) \\ C403 & 0.0719(3) & 0.3158(5) & 0.390(4) & 0.045(2) \\ C404 & 0.1056(3) & 0.3152(5) & 0.3351(4) & 0.051(2) \\ C405 & 0.1412(3) & 0.2615(5) & 0.3351(4) & 0.051(2) \\ C404 & 0.1056(3) & 0.3152(5) & 0.3350(4) & 0.045(2) \\ C407 & 0.1024(3) & 0.3697(6) & 0.2358(5) & 0.075(2) \\ C41 & 0.1830(2) & 0.4275(5) & 0.5540(4) & 0.045(2) \\ C407 & 0.1024(3) & 0.3697(6) & 0.2358(5) & 0.075(2) \\ C41 & 0.1038(3) & 0.4739(7$	O1AB	0.0467(3)	-0.0787(8) 0.1775(3)	0.7349(0)	0.100(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O2AB	0.1473(2)	0.2684(3)	0.5952(3)	0.048(1)
$\begin{array}{cccccc} C2AB & 0.2188(3) & 0.3189(6) & 0.6270(8) & 0.143(3) \\ O1M1 & 0.1688(2) & -0.0610(3) & 0.6890(3) & 0.054(1) \\ C1M1 & 0.1506(3) & -0.1339(6) & 0.6466(5) & 0.091(2) \\ C101 & 0.2328(2) & -0.0039(4) & 0.5689(4) & 0.037(2) \\ C102 & 0.2383(2) & -0.0018(5) & 0.5062(4) & 0.039(2) \\ C103 & 0.2811(2) & -0.063(5) & 0.5153(4) & 0.045(2) \\ C104 & 0.3195(2) & -0.0125(5) & 0.5827(4) & 0.046(2) \\ C105 & 0.3125(2) & -0.0227(5) & 0.6429(4) & 0.043(2) \\ C106 & 0.2707(2) & -0.0180(4) & 0.6378(4) & 0.038(2) \\ C107 & 0.3653(2) & -0.0215(6) & 0.5902(5) & 0.073(2) \\ C11 & 0.2006(2) & -0.021(5) & 0.4279(4) & 0.043(2) \\ C201 & 0.2056(2) & 0.1548(4) & 0.793(4) & 0.034(2) \\ C202 & 0.2493(2) & 0.1548(4) & 0.793(4) & 0.034(2) \\ C203 & 0.2824(2) & 0.1615(5) & 0.8912(4) & 0.042(2) \\ C204 & 0.2746(2) & 0.2235(5) & 0.824(4) & 0.043(2) \\ C205 & 0.2308(2) & 0.2631(5) & 0.8844(4) & 0.043(2) \\ C206 & 0.1968(2) & 0.2265(5) & 0.8224(4) & 0.036(2) \\ C207 & 0.3112(3) & 0.2761(6) & 0.9880(4) & 0.063(2) \\ C220 & 0.2586(2) & 0.0393(5) & 0.8046(4) & 0.043(2) \\ C301 & 0.0470(2) & 0.2691(5) & 0.6148(4) & 0.043(2) \\ C302 & 0.0518(2) & 0.2643(5) & 0.7856(4) & 0.041(2) \\ C304 & 0.0053(2) & 0.4181(5) & 0.6235(5) & 0.047(2) \\ C304 & 0.0053(2) & 0.4181(5) & 0.6235(5) & 0.047(2) \\ C304 & 0.0053(2) & 0.4181(5) & 0.6235(4) & 0.045(2) \\ C304 & 0.0053(2) & 0.4181(5) & 0.6235(5) & 0.047(2) \\ C304 & 0.0053(2) & 0.4181(5) & 0.6235(5) & 0.047(2) \\ C304 & 0.0053(2) & 0.4181(5) & 0.6235(5) & 0.047(2) \\ C304 & 0.0053(2) & 0.4181(5) & 0.6235(5) & 0.047(2) \\ C304 & 0.0053(2) & 0.4181(5) & 0.6235(5) & 0.047(2) \\ C305 & 0.0189(2) & 0.3158(5) & 0.559(4) & 0.045(2) \\ C306 & 0.189(2) & 0.3158(5) & 0.559(4) & 0.048(2) \\ C401 & 0.1096(2) & 0.2066(5) & 0.4758(4) & 0.048(2) \\ C402 & 0.0736(2) & 0.2664(5) & 0.3710(4) & 0.048(2) \\ C403 & 0.0719(3) & 0.3151(5) & 0.3351(4) & 0.047(2) \\ C404 & 0.1056(3) & 0.3152(5) & 0.3909(4) & 0.044(2) \\ C407 & 0.1024(3) & 0.3697(6) & 0.2358(5) & 0.075(2) \\ C41 & 0.1830(2) & 0.1480(5) & 0.4267(4) & 0.044(2) \\ C407 & 0.1024(3) & 0.3697(6) & 0.235$	CIAB	0.1873(3)	0.2490(5)	0.6135(4)	0.051(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2AB	0.2188(3)	0.3189(6)	0.6270(8)	0.143(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	01M1	0.1688(2)	-0.0610(3)	0.6890(3)	0.054(1)
$\begin{array}{cccccc} C101 & 0.2328(2) & -0.0039(4) & 0.5689(4) & 0.037(2) \\ C102 & 0.2383(2) & -0.0018(5) & 0.5062(4) & 0.039(2) \\ C103 & 0.2811(2) & -0.0063(5) & 0.5153(4) & 0.045(2) \\ C104 & 0.3195(2) & -0.0227(5) & 0.6429(4) & 0.043(2) \\ C105 & 0.3125(2) & -0.0215(6) & 0.5902(5) & 0.073(2) \\ C107 & 0.3653(2) & -0.0215(6) & 0.5902(5) & 0.073(2) \\ C11 & 0.2006(2) & -0.0021(5) & 0.4279(4) & 0.043(2) \\ C201 & 0.2056(2) & 0.1548(4) & 0.7933(4) & 0.034(2) \\ C202 & 0.2493(2) & 0.1207(5) & 0.8295(4) & 0.036(1) \\ C203 & 0.2824(2) & 0.1615(5) & 0.8912(4) & 0.042(2) \\ C204 & 0.2746(2) & 0.2332(5) & 0.9194(4) & 0.045(2) \\ C205 & 0.2308(2) & 0.2265(5) & 0.8224(4) & 0.036(2) \\ C207 & 0.3112(3) & 0.2761(6) & 0.9880(4) & 0.063(2) \\ C202 & 0.2586(2) & 0.0393(5) & 0.8046(4) & 0.043(2) \\ C203 & 0.0518(2) & 0.2691(5) & 0.6148(4) & 0.043(2) \\ C204 & 0.0518(2) & 0.2691(5) & 0.6148(4) & 0.043(2) \\ C205 & 0.1968(2) & 0.2691(5) & 0.6148(4) & 0.043(2) \\ C302 & 0.0518(2) & 0.2691(5) & 0.6148(4) & 0.043(2) \\ C303 & 0.0310(2) & 0.3692(5) & 0.6551(4) & 0.045(2) \\ C304 & 0.0053(2) & 0.1481(5) & 0.6235(5) & 0.047(2) \\ C305 & -0.007(2) & 0.3893(5) & 0.5559(4) & 0.045(2) \\ C304 & 0.0053(2) & 0.4181(5) & 0.6235(5) & 0.047(2) \\ C305 & -0.007(2) & 0.3893(5) & 0.5559(4) & 0.045(2) \\ C304 & 0.0053(2) & 0.4181(5) & 0.6235(5) & 0.047(2) \\ C305 & -0.007(2) & 0.3893(5) & 0.5559(4) & 0.045(2) \\ C304 & 0.0053(2) & 0.4181(5) & 0.6235(5) & 0.047(2) \\ C305 & -0.007(2) & 0.3893(5) & 0.5559(4) & 0.045(2) \\ C304 & 0.0053(2) & 0.2425(5) & 0.7525(4) & 0.042(2) \\ C33 & 0.0718(2) & 0.269(5) & 0.4758(4) & 0.048(2) \\ C401 & 0.1096(2) & 0.2066(5) & 0.4082(4) & 0.037(2) \\ C402 & 0.0736(2) & 0.2604(5) & 0.3710(4) & 0.048(2) \\ C404 & 0.1056(3) & 0.3152(5) & 0.3909(4) & 0.044(2) \\ C405 & 0.1412(3) & 0.2615(5) & 0.3351(4) & 0.051(2) \\ C406 & 0.1442(2) & 0.2086(5) & 0.3909(4) & 0.044(2) \\ C407 & 0.1024(3) & 0.3697(6) & 0.2358(5) & 0.075(2) \\ C411 & 0.183(3) & 0.4739(7) & 0.6073(5) & 0.885(3) \\ O152^{b} & -0.0272(4) & 0.0813(8) & 0.0388(6) & 0.0088(6) \\ O.088(6) & 0.0088(6) & 0.00$	CIMI	0.1506(3)	-0.1339(6)	0.6466(5)	0.091(2)
$\begin{array}{ccccccc} C102 & 0.2535(2) & -0.0018(3) & 0.3062(4) & 0.039(2) \\ C103 & 0.2811(2) & -0.0063(5) & 0.5153(4) & 0.045(2) \\ C104 & 0.3195(2) & -0.0227(5) & 0.6429(4) & 0.043(2) \\ C105 & 0.3125(2) & -0.0215(6) & 0.5902(5) & 0.073(2) \\ C107 & 0.3653(2) & -0.0215(6) & 0.5902(5) & 0.073(2) \\ C11 & 0.2006(2) & -0.0021(5) & 0.4279(4) & 0.043(2) \\ C201 & 0.2056(2) & 0.1548(4) & 0.7933(4) & 0.034(2) \\ C202 & 0.2493(2) & 0.1207(5) & 0.8295(4) & 0.036(1) \\ C203 & 0.2824(2) & 0.1615(5) & 0.8912(4) & 0.042(2) \\ C204 & 0.2746(2) & 0.2332(5) & 0.9194(4) & 0.045(2) \\ C205 & 0.2308(2) & 0.2651(5) & 0.8244(4) & 0.043(2) \\ C206 & 0.1968(2) & 0.2265(5) & 0.8224(4) & 0.036(2) \\ C207 & 0.3112(3) & 0.2761(6) & 0.9880(4) & 0.063(2) \\ C222 & 0.2586(2) & 0.0393(5) & 0.8046(4) & 0.043(2) \\ C301 & 0.0470(2) & 0.2691(5) & 0.6148(4) & 0.043(2) \\ C302 & 0.0518(2) & 0.2691(5) & 0.6148(4) & 0.043(2) \\ C303 & 0.0310(2) & 0.3692(5) & 0.6551(4) & 0.047(2) \\ C304 & 0.0053(2) & 0.4181(5) & 0.6235(5) & 0.047(2) \\ C305 & -0.007(2) & 0.3893(5) & 0.5559(4) & 0.045(2) \\ C304 & 0.0053(2) & 0.4181(5) & 0.6235(5) & 0.047(2) \\ C305 & -0.007(2) & 0.3893(5) & 0.5559(4) & 0.045(2) \\ C304 & 0.0053(2) & 0.4181(5) & 0.6235(5) & 0.047(2) \\ C305 & -0.007(2) & 0.3893(5) & 0.5559(4) & 0.045(2) \\ C304 & 0.0053(2) & 0.4181(5) & 0.6235(5) & 0.047(2) \\ C305 & -0.007(2) & 0.3893(5) & 0.5559(4) & 0.045(2) \\ C304 & 0.0053(2) & 0.4181(5) & 0.6235(5) & 0.047(2) \\ C305 & -0.007(2) & 0.3893(5) & 0.5559(4) & 0.045(2) \\ C304 & 0.0053(2) & 0.2425(5) & 0.7525(4) & 0.042(2) \\ C33 & 0.0718(2) & 0.269(5) & 0.4758(4) & 0.048(2) \\ C401 & 0.1096(2) & 0.2066(5) & 0.4082(4) & 0.037(2) \\ C402 & 0.0736(2) & 0.2604(5) & 0.3710(4) & 0.040(2) \\ C404 & 0.1056(3) & 0.3152(5) & 0.3909(4) & 0.044(2) \\ C407 & 0.1024(3) & 0.3677(6) & 0.2358(5) & 0.075(2) \\ C411 & 0.183(02) & 0.1480(5) & 0.4267(4) & 0.044(2) \\ C407 & 0.1024(3) & 0.3697(6) & 0.2358(5) & 0.075(2) \\ C411 & 0.183(3) & 0.4739(7) & 0.6073(5) & 0.885(3) \\ O152^{b} & -0.0272(4) & 0.0813(8) & 0.0388(6) & 0.0088(6) \\ O.088(6) & 0.089(6) \\ O.034$	C101 C102	0.2328(2)	-0.0039(4)	0.5689(4)	0.037(2)
$\begin{array}{cccccc} 0.125 & 0.1251(2) & -0.0162(5) & 0.5827(4) & 0.046(2) \\ C105 & 0.3125(2) & -0.0227(5) & 0.6429(4) & 0.043(2) \\ C106 & 0.2707(2) & -0.0180(4) & 0.6378(4) & 0.038(2) \\ C107 & 0.3653(2) & -0.0215(6) & 0.5902(5) & 0.073(2) \\ C11 & 0.2066(2) & -0.0021(5) & 0.4279(4) & 0.043(2) \\ C201 & 0.2056(2) & 0.1548(4) & 0.7933(4) & 0.034(2) \\ C202 & 0.2493(2) & 0.1207(5) & 0.8295(4) & 0.036(1) \\ C203 & 0.2824(2) & 0.1615(5) & 0.8912(4) & 0.042(2) \\ C204 & 0.2746(2) & 0.2332(5) & 0.9194(4) & 0.045(2) \\ C205 & 0.2308(2) & 0.2265(5) & 0.8224(4) & 0.036(2) \\ C206 & 0.1968(2) & 0.2265(5) & 0.8224(4) & 0.036(2) \\ C207 & 0.3112(3) & 0.2761(6) & 0.9880(4) & 0.063(2) \\ C203 & 0.0470(2) & 0.2691(5) & 0.6148(4) & 0.043(2) \\ C301 & 0.0470(2) & 0.2691(5) & 0.6148(4) & 0.043(2) \\ C302 & 0.0518(2) & 0.2691(5) & 0.6148(4) & 0.043(2) \\ C304 & 0.0053(2) & 0.4418(15) & 0.6235(5) & 0.047(2) \\ C305 & -0.0007(2) & 0.3892(5) & 0.6851(4) & 0.045(2) \\ C306 & 0.0189(2) & 0.3158(5) & 0.559(4) & 0.045(2) \\ C306 & 0.0189(2) & 0.3158(5) & 0.559(4) & 0.045(2) \\ C306 & 0.0189(2) & 0.3158(5) & 0.559(4) & 0.045(2) \\ C306 & 0.0189(2) & 0.3158(5) & 0.559(4) & 0.045(2) \\ C307 & -0.0160(3) & 0.4988(5) & 0.6276(5) & 0.067(2) \\ C33 & 0.0718(2) & 0.2269(5) & 0.4758(4) & 0.048(2) \\ C401 & 0.1096(2) & 0.2066(5) & 0.4082(4) & 0.037(2) \\ C402 & 0.0736(2) & 0.2604(5) & 0.3710(4) & 0.040(2) \\ C403 & 0.0719(3) & 0.3131(5) & 0.3167(4) & 0.047(2) \\ C404 & 0.1056(3) & 0.3152(5) & 0.2984(4) & 0.051(2) \\ C405 & 0.1412(3) & 0.2615(5) & 0.3351(4) & 0.051(2) \\ C406 & 0.1442(2) & 0.2086(5) & 0.3099(4) & 0.044(2) \\ C407 & 0.1024(3) & 0.3697(6) & 0.2358(5) & 0.075(2) \\ C41 & 0.1830(2) & 0.4275(5) & 0.5540(4) & 0.095(2) \\ C151 & 0.1083(3) & 0.4739(7) & 0.6073(5) & 0.856(3) \\ O152^{b} & -0.0272(4) & 0.0813(8) & 0.0388(6) & 0.069(3) \\ C152^{b} & -0.0272(4) & 0.0813(8) & 0.0388(6) & 0.069(3) \\ C152^{b} & -0.0272(4) & 0.0813(8) & 0.0388(6) & 0.069(3) \\ C152^{b} & -0.0272(4) & 0.0813(8) & 0.0388(6) & 0.069(3) \\ C152^{b} & -0.0272(4) & 0.0813(8) & 0.0388(6) & 0.069(3) \\ C152^{b} $	C102	0.2383(2) 0.2811(2)	-0.0018(3)	0.5062(4) 0.5153(4)	0.039(2) 0.045(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C103	0.3195(2)	-0.0162(5)	0.5827(4)	0.045(2) 0.046(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C105	0.3125(2)	-0.0227(5)	0.6429(4)	0.043(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C106	0.2707(2)	-0.0180(4)	0.6378(4)	0.038(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C107	0.3653(2)	-0.0215(6)	0.5902(5)	0.073(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11	0.2006(2)	-0.0021(5)	0.4279(4)	0.043(2)
$\begin{array}{cccccc} C201 & 0.293(2) & 0.1233(4) & 0.753(4) & 0.034(2) \\ C202 & 0.2493(2) & 0.1207(5) & 0.8295(4) & 0.036(1) \\ C203 & 0.2824(2) & 0.1615(5) & 0.812(4) & 0.042(2) \\ C204 & 0.2746(2) & 0.2332(5) & 0.9194(4) & 0.045(2) \\ C205 & 0.2308(2) & 0.2631(5) & 0.8844(4) & 0.043(2) \\ C206 & 0.1968(2) & 0.2265(5) & 0.8224(4) & 0.036(2) \\ C207 & 0.3112(3) & 0.2761(6) & 0.9880(4) & 0.063(2) \\ C22 & 0.2586(2) & 0.0393(5) & 0.8046(4) & 0.042(2) \\ C23 & 0.1506(2) & 0.2643(5) & 0.7856(4) & 0.041(2) \\ C301 & 0.0470(2) & 0.2691(5) & 0.6148(4) & 0.043(2) \\ C302 & 0.0518(2) & 0.2949(4) & 0.6839(4) & 0.036(2) \\ C303 & 0.0310(2) & 0.3692(5) & 0.6851(4) & 0.045(2) \\ C304 & 0.0053(2) & 0.4181(5) & 0.6235(5) & 0.047(2) \\ C305 & -0.0007(2) & 0.3893(5) & 0.5559(4) & 0.045(2) \\ C306 & 0.0189(2) & 0.3158(5) & 0.55502(4) & 0.040(2) \\ C307 & -0.0160(3) & 0.4988(5) & 0.6276(5) & 0.067(2) \\ C33 & 0.0718(2) & 0.2425(5) & 0.7525(4) & 0.042(2) \\ C34 & 0.0090(2) & 0.2829(5) & 0.4758(4) & 0.048(2) \\ C401 & 0.1096(2) & 0.2664(5) & 0.3710(4) & 0.040(2) \\ C402 & 0.0736(2) & 0.2604(5) & 0.3710(4) & 0.040(2) \\ C403 & 0.0719(3) & 0.3131(5) & 0.3167(4) & 0.051(2) \\ C404 & 0.1056(3) & 0.3152(5) & 0.2984(4) & 0.051(2) \\ C405 & 0.1412(3) & 0.2615(5) & 0.3351(4) & 0.051(2) \\ C406 & 0.1442(2) & 0.2086(5) & 0.3909(4) & 0.044(2) \\ C407 & 0.1024(3) & 0.3697(6) & 0.2358(5) & 0.075(2) \\ C411 & 0.1830(2) & 0.1480(5) & 0.4267(4) & 0.044(2) \\ C444 & 0.0349(2) & 0.2570(5) & 0.3864(4) & 0.046(2) \\ O1S1 & 0.1139(2) & 0.4275(5) & 0.5540(4) & 0.095(2) \\ C151 & 0.1083(3) & 0.4739(7) & 0.6073(5) & 0.085(3) \\ O1S2^{b} & -0.0272(4) & 0.0813(8) & 0.0388(6) & 0.069(3) \\ O1S2^{b} & -0.0272(4) & 0.0813(8) & 0.0388(6) & 0.069(3) \\ O1S2^{b} & 0.006(7) & 0.0349(11) & 0.0112(11) & 0.081(4) \\ O181(4) \\ O182^{b} & 0.0006(7) & 0.0349(11) & 0.0112(11) & 0.081(4) \\ O182^{b} & 0.006(7) & 0.0349(11) & 0.0112(11) & 0.081(4) \\ O182^{b} & 0.0006(7) & 0.0349(11) & 0.0112(11) & 0.081(4) \\ O182^{b} & 0.0006(7) & 0.0349(11) & 0.0112(11) & 0.081(4) \\ O182^{b} & 0.0006(7) & 0.0349(11) & 0.0112(11)$	C201	0.2072(2) 0.2056(2)	-0.0313(3)	0.7071(4) 0.7033(4)	0.046(2)
$\begin{array}{ccccccc} C203 & 0.2824(2) & 0.1615(5) & 0.8912(4) & 0.042(2) \\ C204 & 0.2746(2) & 0.2332(5) & 0.9194(4) & 0.045(2) \\ C205 & 0.2308(2) & 0.2631(5) & 0.8844(4) & 0.043(2) \\ C206 & 0.1968(2) & 0.2265(5) & 0.8224(4) & 0.036(2) \\ C207 & 0.3112(3) & 0.2761(6) & 0.9880(4) & 0.063(2) \\ C22 & 0.2586(2) & 0.0393(5) & 0.8046(4) & 0.042(2) \\ C23 & 0.1506(2) & 0.2643(5) & 0.7856(4) & 0.041(2) \\ C301 & 0.0470(2) & 0.2691(5) & 0.6148(4) & 0.043(2) \\ C302 & 0.0518(2) & 0.2949(4) & 0.6839(4) & 0.036(2) \\ C303 & 0.0310(2) & 0.3692(5) & 0.6851(4) & 0.045(2) \\ C304 & 0.0053(2) & 0.4181(5) & 0.6235(5) & 0.047(2) \\ C305 & -0.0007(2) & 0.3893(5) & 0.5559(4) & 0.045(2) \\ C306 & 0.0189(2) & 0.3158(5) & 0.5559(4) & 0.046(2) \\ C307 & -0.0160(3) & 0.4988(5) & 0.6276(5) & 0.067(2) \\ C33 & 0.0718(2) & 0.2425(5) & 0.7525(4) & 0.042(2) \\ C34 & 0.0090(2) & 0.2829(5) & 0.4758(4) & 0.048(2) \\ C401 & 0.1096(2) & 0.2664(5) & 0.3710(4) & 0.040(2) \\ C402 & 0.0736(2) & 0.2604(5) & 0.3710(4) & 0.040(2) \\ C403 & 0.0719(3) & 0.3131(5) & 0.3167(4) & 0.051(2) \\ C405 & 0.1412(3) & 0.2615(5) & 0.3351(4) & 0.051(2) \\ C406 & 0.1442(2) & 0.2086(5) & 0.3909(4) & 0.044(2) \\ C407 & 0.1024(3) & 0.3697(6) & 0.2358(5) & 0.075(2) \\ C411 & 0.1830(2) & 0.1480(5) & 0.4267(4) & 0.044(2) \\ C404 & 0.0349(2) & 0.2570(5) & 0.3864(4) & 0.046(2) \\ C411 & 0.1830(2) & 0.1480(5) & 0.4267(4) & 0.044(2) \\ C404 & 0.0349(2) & 0.2570(5) & 0.3864(4) & 0.046(2) \\ C411 & 0.1830(2) & 0.1480(5) & 0.4267(4) & 0.044(2) \\ C414 & 0.0349(2) & 0.2570(5) & 0.3864(4) & 0.046(2) \\ O1S1 & 0.1139(2) & 0.4275(5) & 0.5540(4) & 0.095(2) \\ C1S1 & 0.1083(3) & 0.4739(7) & 0.6073(5) & 0.085(3) \\ O1S2^{b} & -0.0272(4) & 0.0813(8) & 0.0388(6) & 0.069(3) \\ O1S2^{b} & 0.006(7) & 0.0349(11) & 0.0112(11) & 0.081(4) \\ O181(4) \\ O182(4) & 0.0389(61) & 0.0112(11) & 0.081(4) \\ O182(4) & 0.0389(61) & 0.0112(11) & 0.081(4) \\ O182(4) & 0.0388(61) & 0.069(3) \\ O152^{b} & 0.0006(7) & 0.0349(11) & 0.0112(11) & 0.081(4) \\ O182(11) & 0.081(4) \\ O182(11) & 0.081(4) \\ O112(11) & 0.081(4) \\ O112(11) & 0.081(4) \\ O112(11) & $	C202	0.2493(2)	0.1207(5)	0.7935(4) 0.8295(4)	0.034(2)
$\begin{array}{ccccccc} C204 & 0.2746(2) & 0.2332(5) & 0.9194(4) & 0.045(2) \\ C205 & 0.2308(2) & 0.2631(5) & 0.8844(4) & 0.043(2) \\ C206 & 0.1968(2) & 0.2265(5) & 0.8224(4) & 0.036(2) \\ C207 & 0.3112(3) & 0.2761(6) & 0.9880(4) & 0.063(2) \\ C22 & 0.2586(2) & 0.0393(5) & 0.8046(4) & 0.042(2) \\ C23 & 0.1506(2) & 0.2643(5) & 0.7856(4) & 0.041(2) \\ C301 & 0.0470(2) & 0.2691(5) & 0.6148(4) & 0.043(2) \\ C302 & 0.0518(2) & 0.2949(4) & 0.6839(4) & 0.036(2) \\ C303 & 0.0310(2) & 0.3692(5) & 0.6851(4) & 0.045(2) \\ C304 & 0.0053(2) & 0.4181(5) & 0.6235(5) & 0.047(2) \\ C305 & -0.0007(2) & 0.3893(5) & 0.5559(4) & 0.045(2) \\ C306 & 0.0189(2) & 0.3158(5) & 0.5559(4) & 0.042(2) \\ C307 & -0.0160(3) & 0.4988(5) & 0.6276(5) & 0.067(2) \\ C33 & 0.0718(2) & 0.2425(5) & 0.7525(4) & 0.042(2) \\ C34 & 0.0090(2) & 0.2829(5) & 0.4758(4) & 0.048(2) \\ C401 & 0.1096(2) & 0.2664(5) & 0.3710(4) & 0.040(2) \\ C403 & 0.0719(3) & 0.3131(5) & 0.3167(4) & 0.047(2) \\ C404 & 0.1056(3) & 0.3152(5) & 0.2984(4) & 0.051(2) \\ C405 & 0.1412(3) & 0.2615(5) & 0.3351(4) & 0.051(2) \\ C406 & 0.1442(2) & 0.2086(5) & 0.3909(4) & 0.044(2) \\ C407 & 0.1024(3) & 0.3697(6) & 0.2358(5) & 0.075(2) \\ C411 & 0.1830(2) & 0.1480(5) & 0.4267(4) & 0.044(2) \\ C444 & 0.0349(2) & 0.2570(5) & 0.3864(4) & 0.046(2) \\ C411 & 0.1830(2) & 0.1480(5) & 0.4267(4) & 0.044(2) \\ C444 & 0.0349(2) & 0.2570(5) & 0.3864(4) & 0.046(2) \\ C411 & 0.1830(2) & 0.1480(5) & 0.4267(4) & 0.044(2) \\ C444 & 0.0349(2) & 0.2570(5) & 0.3864(4) & 0.046(2) \\ O1S1 & 0.1139(2) & 0.4275(5) & 0.5540(4) & 0.095(2) \\ C1S1 & 0.1083(3) & 0.4739(7) & 0.6073(5) & 0.085(3) \\ O1S2^{b} & -0.0272(4) & 0.0813(8) & 0.0388(6) & 0.069(3) \\ O1S2^{b} & 0.006(7) & 0.0349(11) & 0.0112(11) & 0.081(4) \\ \end{array}$	C203	0.2824(2)	0.1615(5)	0.8912(4)	0.042(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C204	0.2746(2)	0.2332(5)	0.9194(4)	0.045(2)
$\begin{array}{ccccccc} C206 & 0.1968(2) & 0.2265(5) & 0.8224(4) & 0.036(2) \\ C207 & 0.3112(3) & 0.2761(6) & 0.9880(4) & 0.063(2) \\ C22 & 0.2586(2) & 0.0393(5) & 0.8046(4) & 0.042(2) \\ C23 & 0.1506(2) & 0.2643(5) & 0.7856(4) & 0.041(2) \\ C301 & 0.0470(2) & 0.2691(5) & 0.6148(4) & 0.043(2) \\ C302 & 0.0518(2) & 0.2949(4) & 0.6839(4) & 0.036(2) \\ C303 & 0.0310(2) & 0.3692(5) & 0.6851(4) & 0.045(2) \\ C304 & 0.0053(2) & 0.4181(5) & 0.6235(5) & 0.047(2) \\ C305 & -0.0007(2) & 0.3893(5) & 0.5559(4) & 0.045(2) \\ C306 & 0.0189(2) & 0.3158(5) & 0.5502(4) & 0.040(2) \\ C307 & -0.0160(3) & 0.4988(5) & 0.6276(5) & 0.067(2) \\ C34 & 0.0090(2) & 0.2829(5) & 0.4758(4) & 0.048(2) \\ C401 & 0.1096(2) & 0.2664(5) & 0.3710(4) & 0.040(2) \\ C402 & 0.0736(2) & 0.2604(5) & 0.3710(4) & 0.040(2) \\ C403 & 0.0719(3) & 0.3131(5) & 0.3167(4) & 0.051(2) \\ C405 & 0.1412(3) & 0.2615(5) & 0.3351(4) & 0.051(2) \\ C406 & 0.1442(2) & 0.2065(5) & 0.3909(4) & 0.044(2) \\ C407 & 0.1024(3) & 0.3697(6) & 0.2358(5) & 0.075(2) \\ C411 & 0.1830(2) & 0.1480(5) & 0.4267(4) & 0.044(2) \\ C407 & 0.1024(3) & 0.3697(6) & 0.2358(5) & 0.075(2) \\ C411 & 0.1830(2) & 0.1480(5) & 0.4267(4) & 0.044(2) \\ C407 & 0.1024(3) & 0.3697(6) & 0.3351(4) & 0.051(2) \\ C411 & 0.1830(2) & 0.1480(5) & 0.4267(4) & 0.044(2) \\ C424 & 0.0349(2) & 0.2570(5) & 0.3864(4) & 0.046(2) \\ O1S1 & 0.1139(2) & 0.4275(5) & 0.5540(4) & 0.095(2) \\ C1S1 & 0.1083(3) & 0.4739(7) & 0.6073(5) & 0.085(3) \\ O1S2^b & -0.0272(4) & 0.0813(8) & 0.0388(6) & 0.069(3) \\ C1S2^b & 0.0006(7) & 0.0349(11) & 0.0112(11) & 0.081(4) \\ \end{array}$	C205	0.2308(2)	0.2631(5)	0.8844(4)	0.043(2)
$\begin{array}{ccccccc} C207 & 0.3112(3) & 0.2761(6) & 0.9880(4) & 0.063(2) \\ C22 & 0.2586(2) & 0.0393(5) & 0.8046(4) & 0.042(2) \\ C301 & 0.0470(2) & 0.2643(5) & 0.7856(4) & 0.041(2) \\ C302 & 0.0518(2) & 0.2949(4) & 0.6839(4) & 0.036(2) \\ C303 & 0.0310(2) & 0.3692(5) & 0.6851(4) & 0.045(2) \\ C304 & 0.0053(2) & 0.4181(5) & 0.6235(5) & 0.047(2) \\ C305 & -0.0007(2) & 0.3893(5) & 0.5559(4) & 0.045(2) \\ C306 & 0.0189(2) & 0.3158(5) & 0.5550(4) & 0.046(2) \\ C307 & -0.0160(3) & 0.4988(5) & 0.6276(5) & 0.067(2) \\ C33 & 0.0718(2) & 0.2425(5) & 0.7525(4) & 0.042(2) \\ C34 & 0.0090(2) & 0.2829(5) & 0.4758(4) & 0.048(2) \\ C401 & 0.1096(2) & 0.2664(5) & 0.3710(4) & 0.040(2) \\ C402 & 0.0736(2) & 0.2604(5) & 0.3710(4) & 0.040(2) \\ C403 & 0.0719(3) & 0.3131(5) & 0.3167(4) & 0.051(2) \\ C405 & 0.1412(3) & 0.2615(5) & 0.3351(4) & 0.051(2) \\ C406 & 0.1442(2) & 0.2066(5) & 0.4267(4) & 0.044(2) \\ C407 & 0.1024(3) & 0.3697(6) & 0.2358(5) & 0.075(2) \\ C411 & 0.1830(2) & 0.1480(5) & 0.4267(4) & 0.044(2) \\ C411 & 0.1830(2) & 0.1480(5) & 0.4267(4) & 0.044(2) \\ C411 & 0.1830(2) & 0.1480(5) & 0.4267(4) & 0.044(2) \\ C411 & 0.1830(2) & 0.1480(5) & 0.4267(4) & 0.044(2) \\ C411 & 0.1830(2) & 0.1480(5) & 0.4267(4) & 0.044(2) \\ C411 & 0.183(3) & 0.4739(7) & 0.6073(5) & 0.885(3) \\ O152^{b} & -0.0272(4) & 0.0813(8) & 0.0388(6) & 0.069(3) \\ O152^{b} & -0.0272(4) & 0.0813(8) & 0.0388(6) & 0.069(3) \\ O152^{b} & 0.006(7) & 0.0349(11) & 0.0112(11) & 0.081(4) \\ O112(11) & 0.081(4) \\ $	C206	0.1968(2)	0.2265(5)	0.8224(4)	0.036(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C207	0.3112(3) 0.2586(2)	0.2/61(6)	0.9880(4)	0.063(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C22	0.2586(2) 0.1506(2)	0.0393(5) 0.2643(5)	0.8046(4)	0.042(2) 0.041(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C301	0.0470(2)	0.2691(5)	0.6148(4)	0.043(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C302	0.0518(2)	0.2949(4)	0.6839(4)	0.036(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C303	0.0310(2)	0.3692(5)	0.6851(4)	0.045(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C304	0.0053(2)	0.4181(5)	0.6235(5)	0.047(2)
$\begin{array}{ccccccc} C300 & 0.0189(2) & 0.3136(3) & 0.3302(4) & 0.040(2) \\ C307 & -0.0160(3) & 0.4988(5) & 0.6276(5) & 0.067(2) \\ C33 & 0.0718(2) & 0.2425(5) & 0.7525(4) & 0.042(2) \\ C34 & 0.0090(2) & 0.2829(5) & 0.4758(4) & 0.048(2) \\ C401 & 0.1096(2) & 0.2066(5) & 0.4082(4) & 0.037(2) \\ C402 & 0.0736(2) & 0.2604(5) & 0.3710(4) & 0.040(2) \\ C403 & 0.0719(3) & 0.3131(5) & 0.3167(4) & 0.047(2) \\ C404 & 0.1056(3) & 0.3152(5) & 0.2984(4) & 0.051(2) \\ C405 & 0.1412(3) & 0.2615(5) & 0.3351(4) & 0.051(2) \\ C406 & 0.1442(2) & 0.2086(5) & 0.3909(4) & 0.044(2) \\ C407 & 0.1024(3) & 0.3697(6) & 0.2358(5) & 0.075(2) \\ C41 & 0.1830(2) & 0.1480(5) & 0.4267(4) & 0.044(2) \\ C44 & 0.0349(2) & 0.2570(5) & 0.3864(4) & 0.046(2) \\ O1S1 & 0.1139(2) & 0.4275(5) & 0.5540(4) & 0.095(2) \\ C1S1 & 0.1083(3) & 0.4739(7) & 0.6073(5) & 0.085(3) \\ O1S2^b & -0.0272(4) & 0.0813(8) & 0.0388(6) & 0.069(3) \\ C1S2^b & 0.0006(7) & 0.0349(11) & 0.0112(11) & 0.081(4) \\ \end{array}$	C305	-0.0007(2)	0.3893(5)	0.5559(4)	0.045(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C307	-0.0169(2)	0.3138(3)	0.3302(4)	0.040(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C33	0.0718(2)	0.2425(5)	0.7525(4)	0.042(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C34	0.0090(2)	0.2829(5)	0.4758(4)	0.048(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C401	0.1096(2)	0.2066(5)	0.4082(4)	0.037(2)
$\begin{array}{cccccc} C403 & 0.0719(3) & 0.3131(5) & 0.3167(4) & 0.047(2) \\ C404 & 0.1056(3) & 0.3152(5) & 0.2984(4) & 0.051(2) \\ C405 & 0.1412(3) & 0.2615(5) & 0.3351(4) & 0.051(2) \\ C406 & 0.1442(2) & 0.2086(5) & 0.3909(4) & 0.044(2) \\ C407 & 0.1024(3) & 0.3697(6) & 0.2358(5) & 0.075(2) \\ C41 & 0.1830(2) & 0.1480(5) & 0.4267(4) & 0.044(2) \\ C44 & 0.0349(2) & 0.2570(5) & 0.3864(4) & 0.046(2) \\ O1S1 & 0.1139(2) & 0.4275(5) & 0.5540(4) & 0.095(2) \\ C1S1 & 0.1083(3) & 0.4739(7) & 0.6073(5) & 0.085(3) \\ O1S2^b & -0.0272(4) & 0.0813(8) & 0.0388(6) & 0.069(3) \\ C1S2^b & 0.0006(7) & 0.0349(11) & 0.0112(11) & 0.081(4) \\ \end{array}$	C402	0.0736(2)	0.2604(5)	0.3710(4)	0.040(2)
$\begin{array}{ccccccc} C404 & 0.1056(3) & 0.3152(5) & 0.2984(4) & 0.051(2) \\ C405 & 0.1412(3) & 0.2615(5) & 0.3351(4) & 0.051(2) \\ C406 & 0.1442(2) & 0.2086(5) & 0.3909(4) & 0.044(2) \\ C407 & 0.1024(3) & 0.3697(6) & 0.2358(5) & 0.075(2) \\ C41 & 0.1830(2) & 0.1480(5) & 0.4267(4) & 0.044(2) \\ C44 & 0.0349(2) & 0.2570(5) & 0.3864(4) & 0.046(2) \\ O1S1 & 0.1139(2) & 0.4275(5) & 0.5540(4) & 0.095(2) \\ C1S1 & 0.1083(3) & 0.4739(7) & 0.6073(5) & 0.085(3) \\ O1S2^b & -0.0272(4) & 0.0813(8) & 0.0388(6) & 0.069(3) \\ C1S2^b & 0.0006(7) & 0.0349(11) & 0.0112(11) & 0.081(4) \\ \end{array}$	C403	0.0719(3)	0.3131(5)	0.3167(4)	0.047(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C404 C405	0.1056(3)	0.3132(3)	0.2984(4)	0.051(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C406	0.1442(2)	0.2015(5)	0.3909(4)	0.031(2) 0.044(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C407	0.1024(3)	0.3697(6)	0.2358(5)	0.075(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C41	0.1830(2)	0.1480(5)	0.4267(4)	0.044(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C44	0.0349(2)	0.2570(5)	0.3864(4)	0.046(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	01S1	0.1139(2)	0.4275(5)	0.5540(4)	0.095(2)
$C1S2^{5} = -0.0272(4)$ $0.0613(8)$ $0.0388(6)$ $0.069(3)$ $C1S2^{5} = 0.0006(7)$ $0.0349(11)$ $0.0112(11)$ $0.081(4)$	CISI	0.1083(3)	0.4739(7)	0.6073(5)	0.085(3)
	C1S2 ^b	0.0006(7)	0.0349(11)	0.0388(0) 0.0112(11)	0.009(3) 0.081(4)

 ${}^{a} U_{eq} = {}^{1}/{}_{3} \sum_{i} \sum_{j} [U_{ij}(a^{*}_{i}a^{*}_{j})(\dot{a}_{i}\dot{a}_{j})]. {}^{b}$ Site occupancy = 0.50.

The halves of the molecule on opposite sides of the average plane through N2, Co2, OB, C1A3, C2A3, and N4 have identical connectivities. As can be seen in Figure 4a this plane approximates to a mirror plane although the inequivalence of, for example, C12 and C22 is immediately apparent in this view. In the crystal,

Table 5. Selected Interatomic Distances (Å) and Angles (deg) for $[L_7Zn_4(OH)(CH_3CO_2)_3(CH_3OH)]$ ·1.5CH₃OH (Esd Values In Parentheses)

	Dista	ances	
Zn1····Zn2	3.193(1)	Zn3…Zn4	3.076(2)
Zn1…Zn3	5.111(2)	Zn3–O2	1.978(5)
Zn1…Zn4	3.408(2)	Zn3–O3	1.992(4)
Zn101	1.982(3)	Zn3–N3	2.092(7)
Zn104	2.002(5)	Zn3–O1B	2.267(5)
Zn1-N1	2.017(8)	Zn3–O1A3	1.964(7)
Zn1O1B	2.849(5)	Zn403	2.072(6)
Zn1–O1A1	1.934(7)	Zn4–O4	2.041(5)
Zn2····Zn3	3.198(2)	Zn4–N4	2.103(6)
Zn2····Zn4	3.468(1)	Zn4–O1B	2.012(5)
Zn2O1	2.117(5)	Zn4–O2AB	2.025(5)
Zn2–O2	2.072(5)	O1-C101	1.372(9)
Zn2-N2	2.081(5)	O2C201	1.350(7)
Zn2–O1B	2.029(4)	O3-C301	1.349(10)
Zn2–O1AB	2.105(6)	O4-C401	1.353(10)
Zn201M1	2.313(6)	01M1-C1M1	1.410(10)
		.1	
01 7-1 04		gles	101 0(2)
OI-ZnI-O4	123.4(2)	OIB-Zn3-OIA3	101.2(3)
OI-ZnI-NI	96.3(3)	03 - 2n4 - 04	163.9(2)
OI-ZnI-OIAI	109.3(3)	03-Zn4-N4	91.0(3)
O4-ZnI-NI	93.4(3)	$O_3 - Zn_4 - O_1B$	83.3(2)
04-Zni-OIAI	103.7(3)	O3-Zn4-O2AB	97.7(3)
NI-ZnI-OIAI	132.8(3)	04-Zn4-N4	91.2(3)
OIB-ZnI-OIAI	74.3(3)	O4-Zn4-O1B	88.8(2)
O1 - Zn2 - O2	1/5.6(3)	04-Zn4-O2AB	97.8(3)
OI - Zn 2 - N 2	92.4(3)	N4-Zn4-OIB	158.1(3)
OI - Zn 2 - OIB	96.4(2)	N4-ZR4-UZAB	98.6(3)
OI - Zn 2 - OIAB	89.3(3)	01B-Zn4-02AB	103.1(3)
OI - Zn 2 - OI MI	92.2(3)	Zn1-O1-Zn2	102.3(3)
02 - 2n2 - N2	89.7(3)	Zn1-01-C101	124.1(4)
$O_2 - Zn_2 - O_1B$	81.2(2)	Zn2-01-C101	121.2(4)
$O_2 - Zn_2 - O_1AB$	94.6(3)	Zn2-O2-Zn3	104.3(3)
$O_2 - Zn_2 - OIMI$	84.0(3)	$Zn_2 = O_2 = C_2 O_1$	125.0(4)
$N_2 - Zn_2 - OIB$	169.9(3)	Zn3-02-C201	128.4(4)
$N_2 - Zn_2 - OIAB$	89.1(3)	$Zn_{3} - O_{3} - Zn_{4}$	98.4(2)
$N_2 - Zn_2 - OIMI$	88.0(3)	Zn303C301	128.9(4)
OIB-Zn2-OIAB	96.1(3)	Zn4-03C301	123.7(4)
OIB-Zn2-OIMI	80.0(3)	Zn1-O4-Zn4	114.9(3)
OIAB-Zn2-OIMI	1/6.8(3)	Zn1-04-0401	122.6(4)
$O_2 - Zn_3 - O_3$	127.4(2)	Zn4-04-0401	121.8(4)
$O_2 - Zn_3 - N_3$	90.2(3)	$Zn_2 - OIB - Zn_3$	96.1(2)
$O_2 - Zn_3 - O_1B$	//.6(2)	Zn2-O1B-Zn4	118.3(3)
$O_2 - Zn_3 - OIA_3$	130.5(3)	$Zn_3 - OIB - Zn_4$	91.7(2)
$O_3 - Z_{n_3} - N_3$	91.9(3)	Zni-OIAI-CIAI	111.2(5)
03-Zn3-01B	/8.8(2)	$Zn_3 = OIA_3 = CIA_3$	116.9(6)
UJ-ZNJ-OIAJ	99.9(3)	Zn2-OIAB-CIAB	132.6(5)
$N_{J} = Z_{N_{J}} = O_{1} B$	154.9(3)	Zn4-OZAB-CIAB	123.2(5)
N3Zn3O1A3	103.3(3)	Zn2-OIMI-CIMI	127.4(6)

the complex cation is buckled into an asymmetric conformation, both enantiomeric forms being present as is required by the centrosymmetric $P2_1/n$ space group. Some indication of the extent of the buckling from C_s symmetry is given by the inclinations to the Co₃ plane of the normals to the aromatic rings (C100 ring, 26.5°; C200 ring, 16.7°; C300 ring 60.2°; C400 ring, 55.7°).

¹H and ¹³C NMR spectra in CD₃OD are consistent with the presence in solution of the two enantiomorphic conformers seen in the crystal structure undergoing rapid interconversion by ligand flexing so as to generate an averaged conformation with C_s symmetry. In CD₃OD solution, amino protons and methylene protons are decoupled so that the four different types of methylenes appear in the ¹H spectrum as four AB quartets (δ 3.34, 3.52, J = 13.5 Hz; δ 3.61, 4.09, J = 14.5 Hz; δ 3.75, 4.95, J = 12.0 Hz; δ 4.46, 4.50, J = 8.3 Hz); likewise, four singlets of methylene origin are seen in the ¹³C NMR spectrum (δ 51.74, 52.57, 52.78, 54.40). All six carbons within any aromatic ring are inequivalent, so the effective C_s symmetry requires twelve different aromatic carbon atoms, all of which are seen in the ¹³C NMR spectrum $(\delta 123.49, 124.63, 124.94, 125.67, carbons or the to phenols; \delta$ 127.77, 130.50, para carbons; δ 130.89, 131.28, 132.06, 132.66, meta carbons; δ 151.99, 159.12, ipso carbons). Likewise, in the ¹H NMR spectrum, essentially four singlets arising from the

Figure 3. Averaged arrangement with $C_{2\nu}$ symmetry of $[L_rZn^{II}_{4}-(OH)(CH_3CO_2)_3]$ in solution including the NMR-labeling scheme.

Figure 4. Front view (a) and side view (b) of the $[L_4Co^{III}_3(OH)(CH_3-CO_2)_3]^+$ cation present in $[L_rCo^{III}_3(OH)(CH_3CO_2)_3]BF_4\cdot3.83H_2O$.

meta C-H's are seen (components from meta coupling not resolved). Consistent with the averaged C_s symmetry, two different types of ligand methyls are apparent in the ¹H NMR spectrum (δ 2.22, 2.24), but in the ¹³C NMR spectrum, the two signals are superimposed (δ 20.20). Two different types of acetate

Table 6. Final Atomic Coordinates and Equivalent Isotopic Displacement Parameters $(Å^2)$ for the Atoms of the Cation in $[L_1Co_3(OH)(CH_3CO_2)_3]BF_4-3.83H_2O$ (Esd Values in Parentheses)

atom	x	У	Z	$U_{eq}{}^a$
Col	0.17480(11)	0.46275(10)	0.21614(7)	0.0310(4)
Co2¢	-0.00749(11)	0.43710(10)	0.21271(7)	0.0331(4)
Co3d	0.03996(12)	0.58274(11)	0.29030(7)	0.0401(4)
Co4*	0.1678(6)	0.4514(6)	0.3547(4)	0.042(2)
01	0.0693(5)	0.4690(5)	0.1542(3)	0.036(2)
02	-0.0452(5)	0.5558(5)	0.2171(3)	0.041(2)
03	0.1330(6)	0.5911(6)	0.3560(4)	0.058(2)
04	0.2575(5)	0.4647(5)	0.2882(4)	0.048(2)
N1	0.2594(6)	0.4384(7)	0.1602(4)	0.047(2)
N2	-0.1066(6)	0.4064(6)	0.1507(4)	0.042(2)
N3	-0.0183(7)	0.6879(7)	0.3145(5)	0.053(2)
N4	0.2964(8)	0.5329(7)	0.4080(5)	0.067(3)
OIR	0.0895(5)	0.4756(5)	0.2681(3)	0.039(2)
0141	0.1696(5)	0.3368(5)	0.2001(3)	0.043(2)
0241	0.0253(5)	0.3175(5)	0.2220(4)	0.042(2)
CIAI	0.1030(9)	0.2886(8)	0.2120(4)	0.042(2)
C2A1	0.1155(9)	0 1010(8)	0.2204(8)	0.070(3)
O1A2	-0.0694(5)	0.1919(0)	0.2264(8)	0.070(3)
0142	-0.0074(5)	0.4032(3)	0.2703(4)	0.040(2)
C1 A 2	-0.0209(0)	0.3203(3)	0.3717(4)	0.051(2)
CIAZ	-0.0700(3)	0.4472(7)	0.320+(0)	0.032(3)
01 4 2	-0.1272(10)	0.4130(11)	0.3713(7)	0.078(3)
OIAS	0.1903(0)	0.3830(3)	0.2002(4)	0.049(2)
OZAS CIA2	0.0940(0)	0.0003(3)	0.2403(4)	0.048(2)
CIAS	0.1542(10)	0.0313(8)	0.20/9(0)	0.048(3)
CZAS	0.1803(10)	0.7329(8)	0.1/50(6)	0.060(3)
CIUI	0.0041(8)	0.4299(8)	0.09/8(5)	0.040(2)
C102	0.1383(8)	0.4124(9)	0.0700(5)	0.04/(3)
C103	0.1200(9)	0.3/08(9)	0.0120(6)	0.053(3)
C104	0.0469(10)	0.3486(9)	-0.0191(6)	0.053(3)
C105	-0.0265(9)	0.3/12(9)	0.0066(6)	0.050(3)
C106	-0.0183(8)	0.4123(9)	0.0645(6)	0.047(3)
C107	0.0405(11)	0.3013(11)	-0.0827(7)	0.079(3)
CII	0.2248(9)	0.4554(12)	0.0947(6)	0.072(3)
C12	-0.0994(8)	0.4450(9)	0.0892(5)	0.048(3)
C201	-0.1310(8)	0.5/64(9)	0.2159(6)	0.045(2)
C202	-0.1997(9)	0.5200(8)	0.1927(6)	0.044(3)
C203	-0.2852(9)	0.5481(10)	0.1938(6)	0.057(3)
C204	-0.3049(10)	0.6296(10)	0.2188(6)	0.058(3)
C205	-0.2349(10)	0.6842(9)	0.2402(6)	0.057(3)
C206	-0.1502(9)	0.6604(9)	0.2389(6)	0.051(3)
C207	-0.3979(10)	0.6569(12)	0.2219(8)	0.089(3)
C22	-0.1901(8)	0.4263(9)	0.1696(6)	0.049(2)
C23	-0.0794(9)	0.7230(9)	0.2606(6)	0.051(3)
C301	0.1401(9)	0.6473(8)	0.4042(6)	0.050(3)
C302	0.0980(10)	0.7281(9)	0.4024(6)	0.059(3)
C303	0.1089(10)	0.7828(9)	0.4528(7)	0.059(3)
C304	0.1637(10)	0.7605(10)	0.5071(7)	0.061(3)
C305	0.2083(9)	0.6819(10)	0.5081(6)	0.058(3)
C306	0.1958(9)	0.6239(9)	0.4587(6)	0.051(3)
C307	0.1743(12)	0.8197(12)	0.5640(6)	0.083(3)
C33	0.0425(10)	0.7588(9)	0.3431(6)	0.065(3)
C34	0.2421(10)	0.5378(10)	0.4622(7)	0.065(3)
C401	0.3426(9)	0.4585(8)	0.2920(6)	0.051(3)
C402	0.3917(9)	0.4513(11)	0.3521(6)	0.064(3)
C403	0.4818(10)	0.4438(11)	0.3594(8)	0.079(3)
C404	0.5292(9)	0.4445(10)	0.3109(7)	0.061(3)
C405	0.4793(8)	0.4501(8)	0.2544(6)	0.052(3)
C406	0.3911(8)	0.4575(8)	0.2414(6)	0.046(2)
C407	0.6248(9)	0.4364(12)	0.3250(8)	0.081(3)
C41	0.3449(9)	0.4774(12)	0.1751(7)	0.072(3)
C44	0.3401(11)	0.4473(10)	0.4060(7)	0.080(3)

 $^{a}U_{eq} = {}^{1}/{}_{3}\Sigma_{i}\Sigma_{j}[U_{ij}(\mathbf{a}^{*}, \mathbf{a}^{*}, \mathbf{j})(\mathbf{\ddot{a}}_{i}, \mathbf{\ddot{a}}_{j})], \, ^{b}$ SOF = 0.935(5). c SOF = 0.958(5). d SOF = 0.972(5). e SOF = 0.174(5).

in 1:2 proportions are revealed [¹H NMR δ 2.12 (3H), 1.78 (6H); ¹³C NMR δ 26.17 (methyl of acetate straddling pseudomirror plane), 24.05 (methyl of two equivalent acetates), 191.16, 191.22 (carboxylate)].

Discussion

L_rH₄·4HCl. There has been considerable recent interest in anion-receptor systems;¹¹ the incorporation of the two chlorides inside the macrocyclic cavity of $L_rH_8^{++}$ suggests that the general

Table 7. Selected Interatomic Distances (Å) and Angles (deg) for $[L_rCo_3(OH)(CH_3CO_2)_3]BF_4$ -3.83H₂O (Esd Values in Parentheses)

Distances					
Co1Co2	2.851(2)	Co2-N2	1.939(9)		
Co1Co3	3.369(3)	Co2O1B	1.870(7)		
Co1O1	1.956(7)	Co2-O2A1	1.882(8)		
Co1O4	1.865(8)	Co2-O1A2	1.870(9)		
Co1-N1	1.960(10)	Co3-O2	1.948(7)		
Co1O1B	1.881(8)	Co3-O3	1.872(8)		
Co101A1	1.914(8)	Co3-N3	1.945(11)		
Co101A3	1.893(8)	Co3O1B	1.890(8)		
Co2Co3	2.804(2)	Co3-O2A2	1.893(9)		
Co2O1	1.936(8)	Co3-O2A3	1.884(9)		
Co2O2	1.898(8)	OBHB	0.962(7)		
	An	gles			
O1-Co1-O4	166.4(4)	01-Co2-O2A1	92.2(4)		
O1-Co1-N1	98.9(4)	O1-Co2-O1A2	173.0(4)		
O1-Co1-OB	79.2(4)	O2-Co2-N2	92.5(4)		
O1-Go1-O1A1	93.1(4)	O2-Co2-OB	84.1(4)		
O1-Co1-O1A3	88.9(4)	O2-Co2-O2A1	176.4(4)		
O4-Co1-N1	94.7(4)	O2-Co2-O1A2	90.5(4)		
O4-Co1-OB	87.3(4)	N2-Co2-OB	174.8(4)		
04-Co1-O1A1	89.5(4)	N2-Co2-O2A1	87.2(4)		
O4-Co1-O1A3	91.1(4)	N2-Co2-O1A2	90.4(4)		
N1-Co1-OB	174.7(4)	OB-Co2-O2A1	96.5(4)		
N1-Co1-O1A1	83. 9 (4)	OBCo2O1A2	93.5(4)		
N1-Co1-O1A3	85.0(4)	O2A1-Co2-O1A2	85.9(4)		
OBCo1O1A1	91.3(4)	O2-Co3-O3	169.5(4)		
OB-Co1-O1A3	99.9(4)	O2-Co3-N3	96.1(5)		
O1A1-Co1-O1A3	168.9(4)	O2-Co3-OB	82.2(4)		
O1-Co2-O2	91.4(4)	O2-Co3-O2A2	90.6(4)		
O1-Co2-N2	96.2(4)	O2-Co3-O2A3	88.1(4)		
O1-Co2-OB	80.0(4)	O3-Co3-N3	94.4(5)		

anion-binding properties of this carbon could be a worthwhile area for future study. Functionalization of L_rH_4 of the sort being currently intensively investigated with calixarenes¹² and cyclodextrins¹³ promises to be easy and subject to wide variation; new systems for studies in the supramolecular area could thereby be provided.

 $L_r B_2 O$. The formation of cyclic benzoxaborines when Schiff bases of salicylaldehyde derivatives are reduced by borohydride has been reported previously.¹⁴ Molecular models suggest that the structure with boron in diagonally opposite nucleation sites of L_r (as in V) is much more likely than the alternative with boron in adjacent sites which contains a strained four-membered $B_2 O_2$ ring. We have now characterized by X-ray crystallography¹⁵ a number of binuclear derivatives of L_r^{4-} with metals in the diagonally opposite nucleation sites of the type proposed here for $L_r B_2 O$.

Incorporation of CH₂ Groups into the Nucleation Sites of L_r. We had two reasons for studying the reaction between L_rH_4 and formaldehyde. The first was mere curiosity as to how many of the nucleation sites could be occupied by carbon centers. The second relates to the observation that L_rH_4 or some convenient derivative thereof is potentially very easily accessible by Mannichrelated condensation of the inexpensive and readily available starting materials *p*-cresol, formaldehyde, and ammonia. Many attempts to generate L_r derivatives in this way under a variety of conditions have so far given only complex mixtures of products. VI appeared to be a likely outcome of these condensations, and this was one of the reasons for our attempting its synthesis, but

- (13) Kahn, A. R.; Barton, L.; D'Souza, V. T. J. Chem. Soc., Chem. Commun. 1992, 1112.
- (14) Andrews, P. R.; Gulbis, J. M.; Iskander, M. N.; Mackay, M. F. Aust. J. Chem. 1987, 40, 1073.
- (15) Gable, R. W.; Grannas, M. J.; Hoskins, B. F.; Robson, R.; Rosenbaum, R. Unpublished results.

Beer, P. D.; Dickson, C. A. P.; Fletcher, N.; Goulden, A. L.; Grieve, A.; Hodacova, J.; Wear, T. J. Chem. Soc., Chem. Commun. 1993, 828.
Arduini, A.; Casnati, A.; Fabbi, M.; Minari, P.; Pochini, A.; Sicuri, A.

⁽¹²⁾ Arduini, A.; Casnati, A.; Fabbi, M.; Minari, P.; Pochini, A.; Sicuri, A. R.; Ungaro, R. In *Supramolecular Chemistry*; Balzini, V., Decola, L., Eds.; NATO ASI Series; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1992; p 31.

spectroscopic comparison of the product mixtures with authentic VI indicated it was not present.

L₇Zn^{II}₄(OH)(CH₃CO₂)₃(CH₃OH). The bizarre combination of geometrical features shown by $L_rZn^{II}_4(OH)(CH_3CO_2)_3(CH_3-OH)$ is strikingly similar, although not identical in all details, to that shown by the analogous Zn₄ complex of the tetra Schiff base macrocycle L₃Zn₄(OH)(CH₃CO₂)₃.⁵ The central unsymmetrical Zn₄(μ -OH)(μ -CH₃CO₂) systems present in both cases are almost identical with two short Zn–OH bonds, a third somewhat longer, and a fourth longer still. Moreover, the peculiar combination of metal coordination geometries viz. one 6-coordinate, two 5-coordinate, and one 4-coordinate is almost identical in the two cases. The most significant difference is that the acetate attached to the zinc most remote from the hydroxide (i.e. Zn1 in the present case) bridges on the convex side of the bowl to a neighboring Zn in the L₃ case but is monodentate in the present case, the neighbor (Zn2) taking on instead a methanol ligand.

 $[L_rCo^{III}_3(OH)(CH_3CO_2)_3]BF_4$. We note that the dimensions of the vacant nucleation site of L_r in this tricobalt complex seem appropriate for the incorporation of a range of metal cations to generate heterometallic clusters of potential interest. It is noteworthy that only three Co^{III} centers are incorporated under these conditions, but it is quite possible that under other conditions tetracobalt complexes of L_r could be obtained. Perhaps the failure to incorporate four Co^{III} centers is in some way related to the very strong preference of this d⁶ cation for octahedral geometry. We have already identified a number of examples in which L_r incorporates only two metal centers, even in the presence of excess metal ion {e.g. $[(L_rH_2)(V^v_2O_3)H_2O]^{2+}$, $[(L_rH_2)Mo^{VI}_2O_5]$, and $[(L_rH_2)W^{VI}_2O_5]$ }.¹⁵

Experimental Section

L-H-4HCl. Sodium borohydride (1.379 g, 36.5 mmol) was added in small portions to a stirred suspension of finely ground L_sH₄·2HCl⁵ (4.825 g, 7.293 mmol) in ice-cold ethanol (200 mL). The color changed gradually from orange to pale yellow. After the suspension had been stirred at 0 °C for 4 h, it was brought to the boil for 30 min. After the mixture had been cooled, the solid was collected, washed with water and ethanol, and then air-dried. A stirred suspension of the crude solid in cold methanol (150 mL) was acidified with a stream of HCl gas until the suspended solid dissolved. HCl was bubbled in for a further 5 min. The almost colorless solution was filtered and the filtrate concentrated by boiling at atmospheric pressure until a white solid appeared. Ethanol (120 mL) was added, and the flask was allowed to stand at room temperature overnight. The microcrystalline colorless solid was collected, washed with ethanol, and air-dried. Yield: 4.417 g, 79%. Drying the solid in vacuum at 80 °C for 2 h and subsequent exposure to the atmosphere produced a sample with composition L_4H_4 ·4HCl·H₂O. Anal. Calcd for C36H50Cl4N4O5: C, 56.9; H, 6.4; Cl, 18.6; N, 7.4. Found: C, 57.2; H, 6.7; Cl, 18.3; N, 7.6.

L₇B₂O (V). A solution of 2,6-bis(aminomethyl)-4-methylphenol hydrochloride (1.013 g, 5.0 mmol) and acetic acid (0.150 g, 2.5 mmol) in hot methanol (75 mL) was added to a hot solution of 2,6-diformyl-4-methylphenol (0.821 g, 5.0 mmol) in methanol (50 mL) to produce a clear orange-yellow solution, which was maintained at 60 °C for 2 h. The solution was then quickly cooled to 0 °C, and sodium borohydride (1.890 g, 50 mmol) was added in small portions. The solution turned colorless, and when the evolution of H₂ had ceased, it was filtered and the filtrate was concentrated by boiling until solid began to separate. Upon cooling, colorless crystals of L₇B₂O formed, which were collected, washed with methanol, and dried in air. Yield: 46%. Anal. Calcd for C₃₆H₄₀-B₂N₄O₅: C, 68.6; H, 6.4; B, 3.4; N, 8.9. Found: C, 68.7; H, 6.5; B, 3.1; N, 8.8.

Hydrolysis of L₄B₂O. Gaseous HCl was passed into a suspension of L₇B₂O (60 mg, 0.095 mmol) in methanol (20 mL) until almost all the solid had dissolved. The solution was filtered, and the filtrate was concentrated to a volume of approximately 10 mL by boiling at atmospheric pressure. Ethanol (30 mL) was added, and boiling was continued until solid began to separate. The colorless crystals which separated after the solution had been allowed to stand overnight were collected, washed with ethanol, and dried in air. Yield of L_7H_4 4HCl-H₂O, identified by IR: 57 mg, 79%.

Formaldehyde Condensation Product VI. To a solution of L_rH_4 -4HCl-H₂O (0.250 g, 0.329 mmol) in methanol (50 mL) at room temperature were added aqueous formaldehyde (0.133 g, 37% w/w, 1.64 mmol) and a solution of lithium acetate dihydrate (0.268 g, 2.63 mmol) in methanol (15 mL). A colorless, feathery, crystalline solid started to separate within minutes. After the reaction mixture had been standing overnight, the solid was collected, washed with ethanol, and dried in air. Yield: 0.147 g, 67%. Anal. Calcd for C₃₆H₄₄N₄O₄: C, 74.5; H, 6.9; N, 8.7. Found: C, 74.6; H, 7.0; N, 8.6.

Hydrolysis of VI. A sample of VI (50 mg, 0.78 mmol) suspended in ethanol (15 mL) dissolved upon addition of aqueous HCl (2 mL, 32% w/w). The solution was heated to boiling for 10 min and then evaporated to dryness under reduced pressure. The residue was triturated with ethanol, collected, washed with a little further ethanol, and dried in air, yielding L_rH_4 ·4HCl·H₂O (40 mg, 68%), identified by its IR spectrum.

[L_rZn^{II}₄(OH)(CH₃CO₂)₃]-2.5H₂O. Near-boiling solutions of zinc acetate dihydrate (0.720 g, 3.28 mmol) in methanol (75 mL), lithium acetate dihydrate (0.670 g, 6.55 mmol) in methanol (50 mL), and tetraethylammonium hydroxide (3.09 g of 25% w/w solution in methanol, 5.24 mmol) were added to a solution of L_rH₄·4HCl·H₂O (0.500 g, 0.66 mmol) in boiling methanol (75 mL). The resulting colorless solution was concentrated by boiling at atmospheric pressure to *ca*. 60 mL and allowed to stand at room temperature for 3 days, during which time clear colorless crystals separated which were shown by X-ray crystallography to have the composition [L_rZn^{II}₄(OH)(CH₃CO₂)₃(CH₃OH)]·1.5CH₃OH. The crystals were collected, washed with methanol, and dried in vacuum at 80 °C. Exposure to the atmosphere gave the hydrated material [L_rZn^{II}₄(OH)(CH₃CO₂)₃]·2.5H₂O. Yield: 0.507 g, 92%. Anal. Calcd for C₄₂H₅₅N₄O_{13.5}Zn₄: C, 46.1; H, 5.1; N, 5.1; Zn, 23.9. Found: C, 46.2; H, 5.1; N, 5.1; Zn, 24.2.

[LrCo^{III}3(OH)(CH3CO2)3]BF4 xH2O was prepared in two different ways. Method 1: Via the Tetrafluoroborate Salt of L7H84+. A suspension of crude L_rH_4 (0.910 g) in methanol (200 mL) to which aqueous HBF₄ (5 mL, 40%) had been added was heated to its boiling point. The resulting slightly fluorescent pale yellow-green solution was filtered at its boiling point, and the colorless filtrate was concentrated by boiling until a white precipitate started to separate. After 2 days at room temperature, the solid which had separated was collected, washed with methanol, and dried. Yield: 0.382 g. A suspension of a portion of this solid (0.290 g) in hot methanol (120 mL) containing cobaltous acetate tetrahydrate (0.374 g, 1.50 mmol) was heated under reflux for 30 min. The resulting brown solution was filtered while hot, and the filtrate was concentrated by boiling at atmospheric pressure to ca. 20 mL. Crystalline hydrated [LrCo^{III}₃(OH)(CH₃CO₂)₃]BF₄ was obtained by slow transfer of water vapor in an enclosed chamber to the solution over a period of 20 days. Yield: 0.174 g. Drying the solid in vacuo at 80 °C for 2 h followed by re-exposure to the atmosphere gave a solid of composition [L_r-Co¹¹¹₃(OH)(CH₃CO₂)₃]BF₄·5H₂O. Anal. Calcd for C42H60BC03F4N4O16: C, 44.2; H, 5.3; F, 6.7; N, 4.9. Found: C, 44.2; H, 5.3; F, 6.7; N, 4.9.

Method 2: Via L₇H₄·4HCl·H₂O. A solution of cobaltous acetate tetrahydrate (0.224 g, 0.90 mmol) in methanol (20 mL) was added to a solution of L_rH₄·4HCl·H₂O (0.228 g, 0.30 mmol) in boiling methanol (50 mL). Lithium acetate dihydrate (0.245 g, 2.4 mmol) in methanol (25 mL) and tetrabutylammonium tetrafluoroborate (0.296 g, 0.90 mmol) in methanol (25 mL) were added; then O₂ was bubbled into the hot solution to produce a dark brown coloration. The solution was concentrated by boiling at ambient pressure to *ca*. 3 mL. Transfer of water vapor to this solution in an enclosed chamber over a period of 24 h produced a dark brown crystalline solid, which was collected and washed several times with water. Yield: 0.213 g, 62%. Addition of water to the filtrate gave a further crop of solid. Total yield: 84%.

X-ray Crystallography. Single-crystal X-ray diffraction analyses were performed on L_rH_4 ·4HCl·H₂O·CH₃OH·C₂H₅OH, $[L_rZn^{II}_4(OH)(CH_3-CO_2)_3(CH_3OH)]$ ·1.5CH₃OH, and $[L_rCo^{III}_3(OH)(CH_3CO_2)_3]BF_4$ ·3.83H₂O. The details of the data collection and structure refinement for each compound are given in Table 1. Accurate cell dimensions for each compound were determined from a least-squares treatment of the angular settings of 25 carefully centered reflections. Absorption corrections were numerically evaluated by Gaussian integration to a precision of 0.5%;¹⁶ no corrections were made for extinction. The tetrahydrochloride and

⁽¹⁶⁾ Sheldrick, G. M. SHELX-76: A Program for Crystal Structure Determination; University of Cambridge: Cambridge, U.K., 1976.

Co₃ structures were solved using direct methods routines;¹⁷ the Zn₄ structure was solved from the Patterson function of SHELXS-86.¹⁷ Parameters for the atomic scattering curves of Co and Zn, together with corrections for real and imaginary dispersion effects, were taken from ref 18; the scattering curve parameters of the remaining atoms incorporated into the SHELX-76 system were used. An analysis of variance for each structure showed no unusual features. Specific details concerning the structure analysis of each compound are given in the following text.

(a) L_rH_4 ·4HCl·H₂O·CH₃OH·C₂H₅OH. A crystal obtained from the slow evaporation of an acidified ethanol/methanol solution was sealed in a Lindemann glass capillary tube together with mother liquor. A full-matrix least-squares refinement procedure was employed;¹⁶ anisotropic thermal parameters were applied to all non-hydrogen atoms in the structure. With the exception of the hydrogen atoms on Ol and O4, all the hydrogen atoms in the structure, including those associated with the water, methanol, and ethanol molecules, were clearly observed in difference maps. The H atoms on carbon and nitrogen atoms were included in the model at calculated positions using the AFIX instruction of the SHELX system.¹⁶ The positional and isotropic thermal parameters of the hydrogen atoms on oxygen atoms were refined independently. A common isotropic thermal parameter was refined for each type of non-hydroxyl hydrogen atom.

(b) $[L_rZn^{II}_4(OH)(CH_3CO_2)_3(CH_3OH)]$ -1.5CH₃OH. A colorless crystal obtained directly from the reaction mixture was sealed together with mother liquor in a Lindemann glass capillary tube. A blocked full-matrix least-squares refinement procedure was employed; anisotropic thermal parameters were applied to all of the non-hydrogen atoms except for those atoms of the methanol molecules of solvation, for which individual isotropic parameters were used. All of the H atoms in the complex, with the exception of the μ_3 -hydroxide hydrogen atom and the hydroxyl hydrogen of the coordinated methanol, were observed in difference maps and included in the model at their calculated positions.

(c) $[L_7C0^{III}_3(OH)(CH_3CO_2)_3]BF_4 \cdot 3.83H_2O$. A dark red-brown monotruncated octahedral crystal, obtained from the slow diffusion of water vapor into the reaction mixture, was glued to a thin glass capillary tube using epoxy resin. A blocked full-matrix least-squares refinement procedure was employed. Initially the structure was treated as an ordered Co3 species. Electron density of approximately 5.2 e Å-3 was observed in difference maps calculated at the later stages of the refinement ca. 2.0 Å from the μ_3 -hydroxide and each of the L_r^4 donor atoms of the vacant nucleation compartment; this was interpreted as cation disorder. Treating the electron density as a partially occupied cobalt atom¹⁹ and including the occupancy factors of all the cobalt atoms as independent parameters in the refinement resulted in the value of the residual index R falling from 0.112 to 0.076 at convergence; the summation of the cobalt occupancies was found to be equal to 3.04(2). The disorder appeared to be such that the cation framework could be replaced in the lattice by several other orientations without substantial alteration to the crystal packing; this would account for the partially occupied cobalt atom observed in the

"vacant" site. Only one cation orientation, which is the major contributor to the structure and is the Co₃ species represented in Figure 4, was fully discernible from the data. The other cation orientations contributing to the structure could not be observed but are required to have the same chemical C, symmetry (two different types of bridging acetates in 1:2 proportions, L_r^4 donor atoms coordinating in mer, fac, mer geometries) to remain consistent with the ¹H and ¹³C NMR spectra. Attempts to further model the disorder of the ligand framework proved unsuccessful; consequently, all the "light" atoms of the cation (viz. L_r^4 , acetate, and hydroxyl atoms) were treated as being fully occupied. The largest peak in the residual electron density distribution (1.09 e Å⁻³) was located within bonding distance of the least occupied cobalt atom and almost certainly corresponded to a structural fragment of a coordinated acetate, but could not be definitively modeled. Anisotropic thermal parameters were applied to all of the cobalt atoms and all of the non-hydrogen atoms of the major contributor cation. All of the H atoms in the cation associated with carbon atoms and the three coordinating amine nitrogens were clearly evident in the difference maps and were included in the model at calculated positions. A common isotropic thermal parameter was employed for each different type of hydrogen atom in the complexes, viz. methyl, methylene, aromatic, acetate, and amine. The hydrogen atom of the μ_3 -hydroxide was observed in difference maps calculated at the later stages of the refinement and was included in the model at the positional parameters observed in the difference maps; its isotropic thermal parameter was fixed at 0.100 Å². A lattice water molecule within hydrogen-bonding distance of the μ_3 -hydroxide (O-O, 2.78(2)Å) was assigned an occupancy factor which was complementary to that of the "fourth" cobalt atom to prevent impossible Co-O interactions. Individual isotropic thermal parameters were refined for all lattice water molecules. The BF4⁻ anion was disordered over two sites: the complementary fractional populations of these sites were included as variables in the refinement; the final values were 0.612(6) and 0.388(6). Each BF₄-site was constrained to a regular tetrahedral geometry with a common B-F distance, which was included as a parameter in the refinement [1.27(3) Å at convergence]. An isotropic thermal parameter was refined for the boron atom of the more populous BF_4 -site. The isotropic thermal parameter of the other B atom site was fixed at 0.150 Å². A common isotropic thermal parameter was refined for the fluorine atoms of both BF₄- anion sites.

Physical Measurements. ¹H and ¹³C NMR spectra were recorded on JEOL FX 90, JEOL FX 400, and Varian Unity 300 spectrometers. Infrared spectra were recorded as KBr disks on a JASCO A 302 spectrophotometer.

Microanalyses were performed by the University of Otago Microanalytical Service, P.O. Box 56, Dunedin, New Zealand, and Analytische Laboratorien, Engelskirchen, Germany.

Acknowledgment. We thank the Australian Research Grants Scheme for support.

Supplementary Material Available: Tables S-1–S-4, listing H atom parameters, anisotropic thermal parameters, complete interatomic distances and bond angles, and least-squares planes for L_rH_4 ·4HCl·H₂O·CH₃-OH·C₂H₃OH, Tables S-5–S-8, listing the corresponding data for $[L_rZn^{II}_4(OH)(CH_3CO_2)_3(CH_3OH)]$ ·5CH₃OH, and Tables S-9–S-13 listing all refined atomic coordinates, H atom parameters, anisotropic thermal parameters, complete interatomic distances and bond angles, and least-squares planes for $[L_rCo^{III}_3(OH)(CH_3CO_2)_3]BF_4$ ·3.83 H₂O (31 pages). Ordering information is given on any current masthead page.

⁽¹⁷⁾ Sheldrick, G. M. SHELX-76: A Program for Crystal Structure Determination. In *Crystallographic Computing 3*; Sheldrick, G. M., Kruger, C., Goddard, R., Eds.; Oxford University Press: Oxford, U.K., 1985; p 175.

⁽¹⁸⁾ Ibers, J. A., Hamilton, W. C., Eds. International Tables for X-ray Crystallography; Kynoch: Birmingham, U.K., 1974; Vol. IV.

⁽¹⁹⁾ We are grateful to a reviewer who suggested we model the cation disorder in this manner.